

BAT32G139 Datasheet

ARM® Cortex®-M0+ based, ultra low power consumption 32-bit microcontroller

Built-in 256K byte Flash, rich simulation function, timer and various communication interfaces

V1.0.8

Please note the following CMS IP policy

- *China Micro Semicon (Shenzhen) Co., Ltd. (hereinafter referred to as the Company) has applied for a patent and enjoys absolute legal rights and interests. The patent rights related to the Company's MCUs or other products have not been authorized to be licensed, and any company, organization or individual who infringes the Company's patent rights through improper means will take all possible legal actions to curb the infringer's improper infringement and recover the losses suffered by the Company as a result of the infringement or the illegal benefits obtained by the infringer.
- *The name and logo of China Micro Semicon (Shenzhen) Co., Ltd. are registered trademarks of the Company.
- * The Company reserves the right to further explain the reliability, functionality and design improvements of the products in the data sheet. However, the Company is not responsible for the use of the Specification Contents. The applications mentioned herein are for illustrative purposes only and the Company does not warrant and does not represent that these applications can be applied without further modification, nor does it recommend that its products be used in places that may cause harm to persons due to malfunction or other reasons. The Company's products are not licensed for lifesaving, life-sustaining devices or systems as critical devices. The Company reserves the right to modify the product without prior notice, please refer to the official website www.mcu.com.cn for the latest information.

Features

Ultra-low power consumption operating environment:

- Power supply voltage range:1.8V to 5.5V
- > Temperature range: -40°C to 105°C
- Low power consumption mode: sleep mode, deep sleep mode
- Operating power consumption: 120uA/MHz@64MHz
- Power consumption in deep sleep mode: 0.8uA
- Deep sleep mode +32.768K+RTC: 1.2uA

Core:

- ARM®32-bitCortex®-M0+ CPU
- Working frequency: 32KHz~64MHz

Memory:

- 256KB Flash memory, with program and data storage shared
- 2.5KB dedicated data Flash memory
- 32KB SRAM memory with parity check

Power and reset management:

- > Built-in power-on reset (POR) circuit
- Built-in voltage detection (LVD) circuit (threshold voltage can be set)

Clock management:

- Built-in high-speed vibrator, accuracy (±1%). Can provide 1MHz~64MHz system clock and peripheral module operation clock
- Built-in 15KHz low-speed oscillator
- ➤ Built-in 1 PLL
- Support 1MHz~20MHz external crystal oscillator
- Support 32.768KHz external crystal oscillator, which can be used to calibrate internal highspeed oscillator

Multiplier/divider module:

- Multiplier: Support single cycle 32bit multiplication operation
- Divider: Support 32bit signed integer division operation, only 8 CPU clock cycles to complete an operation

Enhanced DMA controller:

- Interrupt trigger start
- Transmission mode is selectable (normal transmission mode, repeated transmission mode, block transmission mode and chain transmission mode)
- The transmission source/destination area is optional for the full address space range

Linkage controller:

- The event signals can be linked together to realize the linkage of peripheral functions.
- 15 types of event input, 10 types of event trigger.

Abundant analog peripheral:

- ➤ 12-bit precision ADC converter, conversion rate 1.42Msps, 21 external analog channels, internal optional PGA output as conversion channel, with temperature sensor, support single-channel conversion mode and multi-channel scan conversion mode Conversion range: 0 to positive reference voltage
- 8-bit precision D/A converter, 2-channel analog output, real-time output function, output voltage range 0~V_{DD}
- Comparator (CMP), built-in two-channel comparator with hysteresis, optional input source, reference voltage can be external reference voltage or internal reference voltage
- Programmable gain amplifier (PGA), built-in two-channel PGA, can set 4/8/10/12/14/16/32 times gain, with external GND pin (can be used as differential mode)

• Input/output port:

- Number of I/O port: 45~75
- Can switch between N-channel open drain, TTL input buffer and internal pull-up and pulldown
- > Built-in button interrupt detection function
- Built-in clock output/buzzer output control circuit

Serial two-wire debugger (SWD)

Abundant timer:

- ➤ 16-bit timer: 17 channels (With PWM function and motor dedicated PWM function)
- 15-bit interval timer: 1
- Real-time clock (RTC): 1 (with perpetual calendar, alarm clock function, and supports a wide range of clock correction)
- Watchdog timer (WWDT): 1
- SysTick timer

Abundant and flexible interface:

4-channel serial communication unit: each channel can be freely configured as a 1channel standard UART, 2-channel SPI or 2channel simple I²C

Security function:

- Comply with relevant standards of IEC/UL 60730
- > Abnormal storage space access error
- Support RAM parity check
- Support hardware CRC check
- Support important SFR protection to prevent misoperation
- > 128-bit unique ID number

- Standard I²C: 2 channels
- CAN:2 channel
- Flash secondary protection in debug mode (Level1: only the entire flash area can be erased, not read or write; Level2: the emulator connection is invalid, and the flash operation is not possible)

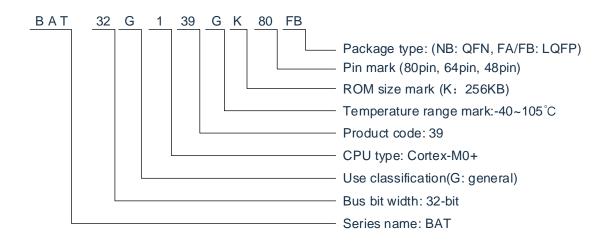
• Encapsulation:

 Support multiple encapsulations of 48Pin, 64Pin and 80Pin

1 Overview

1.1 Introduction

Ultra-low power consumption BAT32G139 adopts high-performance ARM ® Cortex ®- The 32-bit RISC core of M0+can work up to 64MHz, and adopts high-speed embedded flash memory (SRAM maximum 32KB, program/data flash maximum 256KB). This product integrates I²C, SPI, UART, LIN, CAN bus and other standard interfaces. Integrated 12bit A/D converter, temperature sensor, 8bit D/A converter, comparator, programmable gain amplifier. The 12bit A/D converter can be used to collect external sensor signals and reduce the system design cost. 8bit D/A converter can be used for audio playback or power control. The temperature sensor integrated in the chip can realize real-time monitoring of external ambient temperature. The comparator integrated in the chip can be used for control feedback of running motor or battery monitoring and other applications. Integrate a variety of advanced timer modules, including 1-channel SysTick timer, 17-channel 16bit timer, 1-channel 15bit interval timer, watchdog timer and real-time clock, and support general PWM and motor-specific PWM functions.


BAT32G139 also has excellent low-power performance, supports two low-power modes of sleep and deep sleep, and is designed to be flexible. Its operating power consumption is 120uA/MHz@64MHz, and the power consumption is only 0.8uA in deep sleep mode, which is suitable for battery-powered low-power devices. At the same time, due to the integrated event linkage controller, direct connection between hardware modules can be realized without the intervention of the CPU, which is faster than using interrupt response, while reducing the frequency of CPU activity and prolonging the battery life.

These features make the BAT32G139 microcontroller series widely applicable to energy storage, battery packs, motor control, security, power, and other applications.

www.mcu.com.cn 4 / 81 Rev 1.0.8

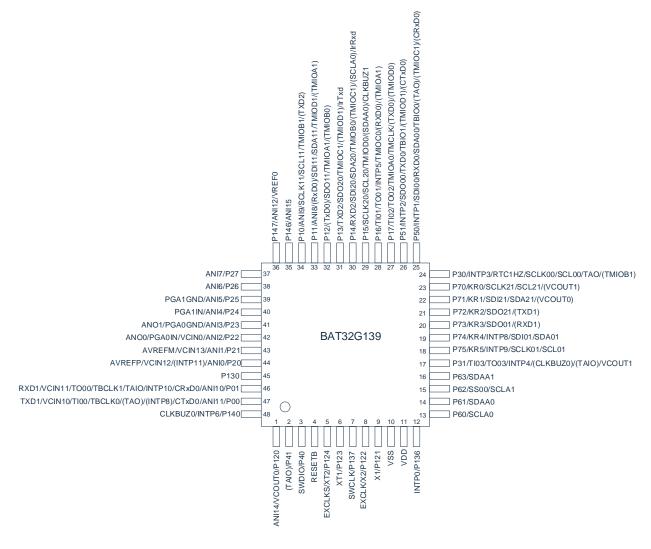
1.2 Product Model List

List of products of BAT32G139:

Number of Pin	Encapsulation	Product model
40 nin	48-pin plastic package LQFP (7×7mm, 0.5mm pitch)	BAT32G139GK48FA
48-pin	48-pin plastic package QFN (6x6mm, 0.4mm pitch).	BAT32G139GK48NB
64-pin	64-pin plastic package LQFP (7×7mm, 0.4mm pitch)	BAT32G139GK64FB
80-pin	80-pin plastic package LQFP (12×12mm, 0.5mm pitch)	BAT32G139GK80FA

FLASH, SRAM capacity:

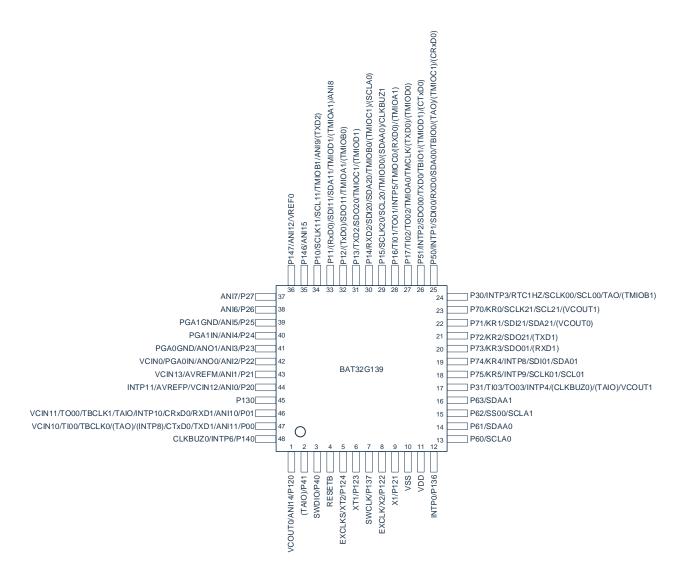
Flash	Special data	SRAM		BAT32G	139	
memory	Flash memory		48	3-pin	64-pin	80-pin
256KB	2.5KB	32KB	BAT32G139GK48	BAT32G139GK48NB	BAT32G139GK64	BAT32G139GK80


www.mcu.com.cn 5 / 81 Rev 1.0.8

1.3 Pin Connection Diagram (Top View)

1.3.1 BAT32G139GK48FA

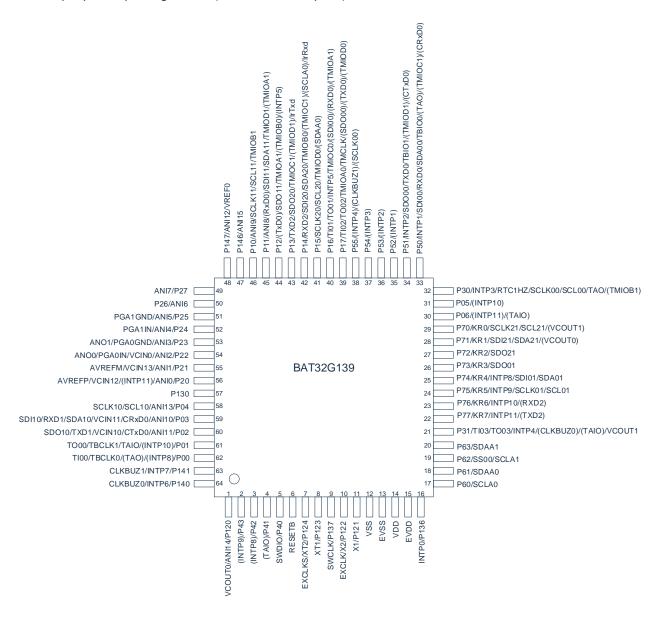
48-pin plastic package LQFP(7x7mm, 0.5mm pitch)


Remark: The functions in the above figure () can be allocated by setting the peripheral I/O redirection register.

www.mcu.com.cn 6 / 81 Rev 1.0.8

1.3.2 BAT32G139GK48NB

• 48-pin plastic package QFN (6x6mm, 0.4mm pitch).

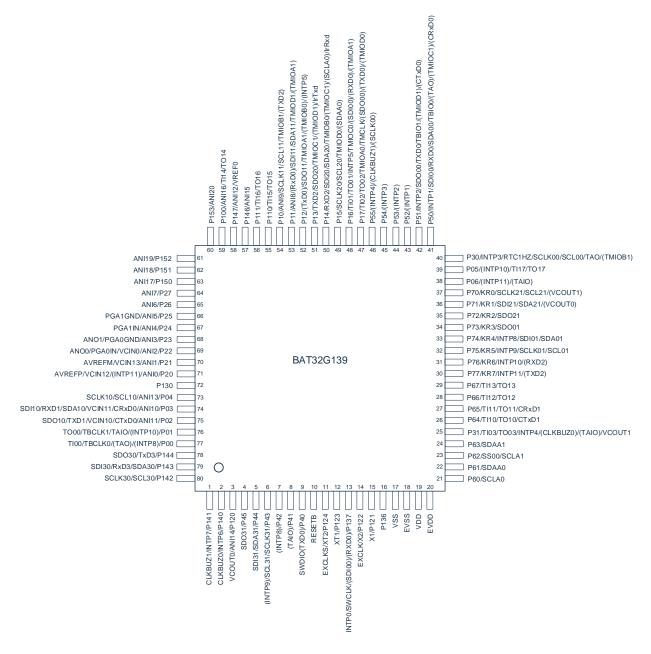

Remark: The functions in () of above Figure can be assigned by setting the peripheral I/O redirection registers.

www.mcu.com.cn 7 / 81 Rev 1.0.8

1.3.3 BAT32G139GK64FB

• 64-pin plastic package LQFP(7x7mm, 0.4mm pitch)

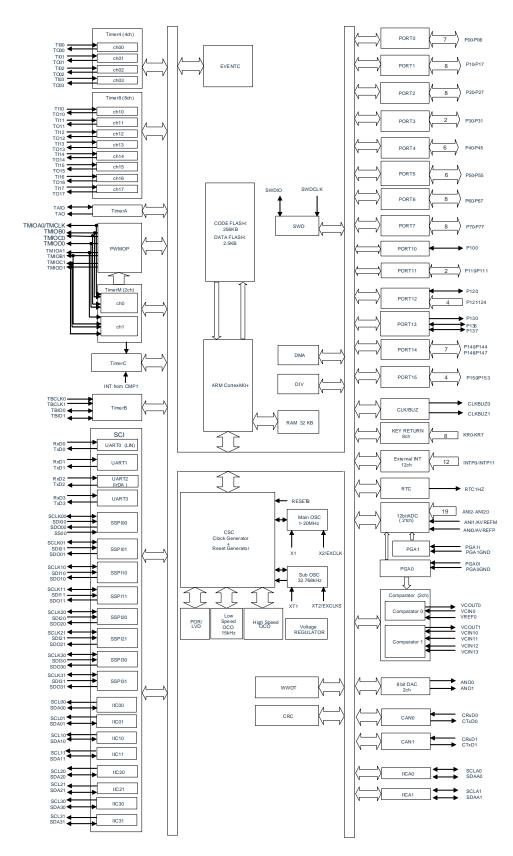
Remark:


- 1. Make EVss pin the same potential as Vss pin.
- 2. Make EV_{DD} pin the same potential as V_{DD} pin.
- 3. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separateground lines.
- 4. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

www.mcu.com.cn 8 / 81 Rev 1.0.8

1.3.4 BAT32G139GK80FA

• 80-pin plastic package LQFP(12x12mm, 0.5mm pitch)


Remark:

- 1. Make EVss pin the same potential as Vss pin.
- 2. Make EV_{DD} pin the same potential as V_{DD} pin.
- 3. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the V_{SS} and EV_{SS} pins to separateground lines.
- 4. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

www.mcu.com.cn 9 / 81 Rev 1.0.8

2 Block Diagram

Remark: The above is for 80-pin product. Some functions of products below 80-pin are not supported.

3 Memory Mapping

FFFF_FFFFH	Keep
E00F_FFFFH	
E000_0000H	Cortex-M0+ dedicated peripheral area
	Keep
4005_FFFFH	
	Peripheral area
4000_0000H	Keep
2000_7FFFH	SRAM (Max32KB)
2000_0000H	Keep
0050_0BFFH 0050_0200H	Data flash 2.5KB
0003_FFFFH	Keep
0000_111111	Main flash area (Max 256KB)
0000_0000H	

www.mcu.com.cn 11 / 81 Rev 1.0.8

4 Pin Function

4.1 Port Function

The relationship between power supply and pins is as follows

80-pin, 64-pin product:

Power/ground	Corresponding pin
EV _{DD} /EV _{SS}	Port pins other than P20~P27, P121~P124, P137 and RESETB
V _{DD} /V _{SS}	• P20~P27, P121~P124, P137 and RESETB

The 48-pin product uses a single power supply, and all pins are powered by V_{DD} .

www.mcu.com.cn 12 / 81 Rev 1.0.8

4.1.1 48-pin Products

(1/2)

Function Name	I/O	After Reset Release	Alternate Function	Function
Doo			ANI11/TXD1/VCIN10/TI00/TBCLK0/(TAO)	Port 0.
P00			/(INTP8)/CTxD0	2-bit I/O port.
				Input/output can be specified in 1-bit units.
		Analog		Use of an on-chip pull-up resistor can be
	1/0	Analog function	ANI/10/PVD1/A/CINI/1/TO00/TPCI K1	specified by a software setting at input port.
P01		Turiction	ANI10/RXD1/VCIN11/TO00/TBCLK1 /TAIO/INTP10/CRxD0	Input of P01 can be set to TTL input buffer.
			/TAIO/INTP10/CRXD0	Output of P00 can be set to N-ch open-drain
				output (V _{DD} tolerance).
				P00 and P01 can be set to analog input
P10		Analog	SCLK11/SCL11/TMIOB1/ANI9/(TXD2)	Port 4
P11		function	(RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/AN	Port 1. 8-bit I/O port.
		Turiction	18	
P12			(TxD0)/SDO11/TMIOA1/(TMIOB0)	Input/output can be specified in 1-bit units.
P13			TxD2/SDO20/TMIOC1/(TMIOD1)/IrTxd	Use of an on-chip pull-up resistor can be
P14			RxD2/SDI20/SDA20/ TMIOB0/(TMIOC1)/	specified by a software setting at input port.
F14	1/0		(SCLA0)/IrRxd	Input of P10 and P14 to P17 can be set to TTL
P15		Input port	SCLK20/SCL20/TMIOD0/(SDAA0)/CLK	input of FT0 and FT4 to FT7 can be set to FTE
F15	15	mparport	BUZ1	Output of P10, P11, P13 to P15, and P17 can
D16			TI01/TO01/INTP5/TMIOC0/(RXD0)/(TMIO	be set to N-ch open-drain output (V _{DD}
F 10	P16		A1)	tolerance).
P17			TI02/TO02/TMIOA0/TMCLK/(TXD0)/(TMIOD	P10 to P11 can be set to analog input.
F 17			0)	The term of the earliest to analog input
P20			ANI0/AVREFP/VCIN12/(INTP11)	
P21			ANI1/AVREFM/VCIN13	
P22			ANI2/ANO0/PGA0IN/VCIN0	Port 2.
P23	1/0	Analog	ANI3/ANO1/PGA0GND	4-bit I/O port.
P24	170	function	ANI4/PGA1IN	Input/output can be specified in 1-bit units.
P25			ANI5/PGA1GND	Can be set to analog input.
P26			ANI6	
P27			ANI7	
Dan	2		INTP3/RTC1HZ/SCLK00/SCL00/TAO	Port 3.
P30			/(TMIOB1)	2-bit I/O port.
				Input/output can be specified in 1-bit units.
	1/0	Input port		Use of an on-chip pull-up resistor can be
P31	1/0	input port	TI03/TO03/INTP4/(CLKBUZ0)/(TAIO)	specified by a software setting at input port.
FJI			/VCOUT1	Input of P30 can be set to TTL input
				buffer.
				Output of P30 can be set to N-ch

				Open-drain output (V _{DD} tolerance).
P40			SWDIO	Port 4
				2-bit I/O port.
P41 I /O	Input port	(TAIO)	Input/output can be specified in 1-bit units.	
			(TAIO)	Use of an on-chip pull-up resistor can be
				specified by a software setting at input port

(2/2)

				(2/2)
Function	I/O	After Reset	Alternate Function	Function
Name	., 0	Release	/ indirect director	- directori
P50			INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO)	Port 5.
1 00			/(TMIOC1)/(CRxD0)	2-bit I/O port.
				Input/output can be specified in 1-bit units.
	1/0	Input port		Use of an on-chip pull-up resistor can be
P51	170	mpat port	INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CT	specified by a software setting at input port.
1 31			xD0)	Input of P50 can be set to TTL input buffer.
				Output of P50 and P51 can be set to N-ch
				opendrain output (V _{DD} tolerance).
P60			SCLA0	Port 6
P61			SDAA0	2-bit I/O port.
P62	1/0	Input port	SS00/SCLA1	Input/output can be specified in 1-bit units.
P63			SDAA1	Output of P60~ P63 can be set to N-ch
1 03			SDAAT	opendrain output (6V tolerance).
P70			KR0/SCLK21/SCL21/(VCOUT1)	Port 7.
P71			KR1/SDI21/SDA21/(VCOUT0)	6-bit I/O port.
P72			KR2/SDO21/(TXD1)	Input/output can be specified.
P73	1/0	Input port	KR3/SDO01/(RXD1)	Use of an on-chip pull-up resistor can be
P74			KR4/INTP8/SDI01/SDA01	specified by a software setting at input port.
P75			KR5/INTP9/SCLK01/SCL01	Output of P71 and P74 can be set to N-ch
F75			NR3/IIV1F9/3CLR01/3CL01	opendrain output (VDD tolerance).
P120	1/0	Analog	ANI14/VCOUT0	Port 12.
1 120	170	function	ANT4/ VCOOTO	1-bit I/O port and 2-bit input-only port.
P121			X1	For only P120, input/output can be specified.
P122			X2/EXCLK	For only P120, use of an on-chip pull-up
P123	1	Input port	XT1	resistor
P124			XT2/EXCLKS	can be specified by a software setting at input
F 124			ATZ/EAGENS	port. P120 can be set to analog input.
P130	0	Output port	_	Port 13.
P136			INTP0	1-bit I/O port and 2-bit input-only port.
	1/0	Input port		P136 and P137 can be designated as input or
P137	170	input port	SWCLK	output in bit units. The input port can be set by
				software, using internal pull-up resistors.
P140		Input port	CLKBUZ0/INTP6	Port 14.
P146	1/0	Analog	ANI15	3-bit I/O port.
P147		function	ANI12/VREF0	Input/output can be specified.

				Use of an on-chip pull-up resistor can be
				specified by a software setting at input port.
				P146 and P147 can be set as analog input.
DECET				Input-only pin for external reset.
RESET	I	_	_	Connect to V _{DD} directly or via a resistor when
D				external reset is not used.

Remark:

- 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).
- 2. Description of Alternate function, please refer to "4.2 Port Multiplexing Function".
- 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

www.mcu.com.cn 15 / 81 Rev 1.0.8

4.1.2 64-pin Products

(1/2)

Function		After Reset		(1/2)
Name	I/O	Release	Alternate Function	Function
P00		Input port	TI00/TBCLK0/(TAO)/(INTP8)	Port 0.
P01		input port	TO00/TBCLK1/TAIO/(INTP10)	7-bit I/O port.
P02		A I	ANI11/SDO10/TXD1/VCIN10/CTxD0	Input/output can be specified in 1-bit units.
P03		Analog	ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0	Use of an on-chip pull-up resistor can be
P04		function	ANI13/SCLK10/SCL10	specified by a software setting at input port.
P05	I/O		(INTP10)	Input of P01, P03 and P04 can be set to
				TTL input buffer.
		Input port		Output of P00 can be set to N-ch open-
P06		input port	(INTP11)/(TAIO)	drain output (V _{DD} tolerance).
				P00 and P02 to P04 can be set to
				analog input
P10		Analog	SCLK11/SCL11/TMIOB1/ANI9	Port 1.
P11		function	(RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI8	8-bit I/O port.
P12			(TxD0)/SDO11/TMIOA1/(TMIOB0)/(INTP5)	Input/output can be specified in 1-bit units.
P13			TXD2/SDO20/TMIOC1/(TMIOD1)/IrTxd	Use of an on-chip pull-up resistor can be
P14			RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(SCL	specified by a software setting at input port.
F 14	I/O		A0)/IrRxd	Input of P10 and P14 to P17 can be set to
P15		Input port	SCLK20/SCL20/TMIOD0/ (SDAA0)	TTL input buffer.
D16			TI01/TO01/INTP5/TMIOC0/(SDI00)/ (RXD0)	Output of P10, P11, P13 to P15, and P17
P16			/(TMIOA1)	can be set to N-ch open-drain output (V _{DD}
P17			TI02/TO02/TMIOA0/TMCLK/(SDO00)	tolerance).
PII			/(TXD0)/(TMIOD0)	P10 to P11 can be set to analog input.
P20			ANIO/AVREFP/VCIN12/(INTP11)	
P21			ANI1/AVREFM/VCIN13	
P22			ANI2/ANO0/PGA0IN/VCIN0	Port 2.
P23		Analog	ANI3/ANO1/PGA0GND	8-bit I/O port.
P24	I/O	function	ANI4/PGA1IN	Input/output can be specified in 1-bit units.
P25			ANI5/PGA1GND	Can be set to analog input.
P26			ANI6	
P27			ANI7	
			INTP3/RTC1HZ/SCLK00/SCL00/TAO	Port 3.
P30			/(TMIOB1)	2-bit I/O port.
				Input/output can be specified in 1-bit units.
				Use of an on-chip pull-up resistor can be
	I/O	Input port	TI03/TO03/INTP4/(CLKBUZ0)/(TAIO)	specified by a software setting at input port.
P31			/VCOUT1	Input of P30 can be set to TTL input
				buffer.
				Output of P30 can be set to N-ch

Opon didin output (VDD toloranoo).			Open-drain output (V _{DD} tolerance).
------------------------------------	--	--	--

(2/2)

Function		After Reset		(2/2)
Name	I/O	Release	Alternate Function	Function
P40			SWDIO	Port 4.
P41			(TAIO)	4-bit I/O port.
P42	I/ O	Innut nort	(INTP8)	Input/output can be specified in 1-bit units.
	1/ 0	Input port		Use of an on-chip pull-up resistor can be
P43			(INTP9)	specified by a software setting at input
				port.
P50			INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO)	Port 5.
1 30			/(TMIOC1)/(CRxD0)	6-bit I/O port.
P51			INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CTxD0	Input/output can be specified in 1-bit units.
F31)	Use of an on-chip pull-up resistor can be
P52	I/ O	Input port	(INTP1)	specified by a software setting at input
P53	1/ 0	input port	(INTP2)	port.
P54			(INTP3)	Input of P50 andP51 can be set to TTL
				input buffer.
P55			(INTP4)/(CLKBUZ1)/(SCLK00)	Output of P50, p51 and P55 can be set to
				N-ch opendrain output (V _{DD} tolerance).
P60			SCLA0	Port 6
P61			SDAA0	4-bit I/O port.
P62	I/O	Input port	SS00/SCLA1	Input/output can be specified in 1-bit units.
P63			SDAA1	Output of P60~ P63 can be set to N-ch
1 00			05/011	opendrain output (6V tolerance).
P70			KR0/SCLK21/SCL21/(VCOUT1)	Port 7.
P71			KR1/SDI21/SDA21/(VCOUT0)	8-bit I/O port.
P72			KR2/SDO21	Input/output can be specified in 1-bit units.
P73	I/ O	Input port	KR3/SDO01	Use of an on-chip pull-up resistor can be
P74	1/ 0	input port	KR4/INTP8/SDI01/SDA01	specified by a software setting at input
P75			KR5/INTP9/SCLK01/SCL01	port.
P76			KR6/INTP10/(RxD2)	Output of P71 and P74 can be set to N-ch
P77			KR7/INTP11/(TxD2)	opendrain output (EV _{DD} tolerance).
P120	I/ O	Analog	ANI14/VCOUT0	Port 12.
F 120	1/ 0	function	ANIT4/VCOOTO	1-bit I/O port and 2-bit input-only port.
P121			X1	For only P120, input/output can be
P122			X2/EXCLK	specified.
P123		Input port	XT1	For only P120, use of an on-chip pull-up
	'	mpat port		resistor can be specified by a software
P124			XT2/EXCLKS	setting at input
				port. P120 can be set to analog input.
P130	0	Output port	_	Port 13.
P136	I/O	Input port	INTP0	1-bit I/O port and 2-bit input-only port.

P137			SWCLK	P136 and P137 can be designated as input or output in bit units. The input port can be set by software, using internal pull-up resistors.
P140		Input port	CLKBUZ0/INTP6	Port 14.
P141		iliput port	CLKBUZ1/INTP7	4-bit I/O port.
P146			ANI15	Input/output can be specified.
	I/O	Analog		Use of an on-chip pull-up resistor can be specified by a software setting at input
P147		function	ANI12/VREF0	port.
				P146 and P147 can be set as analog
				input.
				Input-only pin for external reset.
RESETB	1	_	_	Connect to V _{DD} directly or via a resistor
				when external reset is not used.。

Remark:

- 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).
- 2. Description of Alternate function, please refer to "4.2 Port Multiplexing Function".
- 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

www.mcu.com.cn 18 / 81 Rev 1.0.8

4.1.3 80-pin Products

(1/2)

Function		After Reset		(1/2)	
Name	I/O	Release	Alternate Function	Function	
P00			TI00/TBCLK0/(TAO)/(INTP8)	Port 0.	
P01		Input port	TO00/TBCLK1/TAIO/(INTP10)	7-bit I/O port.	
P02			ANI11/SDO10/TXD1/VCIN10/CTxD0	Input/output can be specified in 1-bit units.	
P03	Analog		ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0	Use of an on-chip pull-up resistor can be	
P04	I/ O	function	ANI13/SCLK10/SCL10	specified by a software setting at input port.	
P05	1/ 0		(INTP10)/TI17/TO17	Input of P01, P03 and P04 can be set to TTL	
				input buffer.	
Doo		Input port	(INITERALIZATION	Output of P00, P02 to P04 can be set to N-ch	
P06			(INTP11)/(TAIO)	open-drain output (EV _{DD} tolerance).	
				P02, P03 and P04 can be set to analog input	
P10		Analog	SCLK11/SCL11/TMIOB1/ANI9/(TXD2)	Port 1.	
P11		function	(RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/AN	8-bit I/O port.	
FII		Turiction	18	Input/output can be specified in 1-bit units.	
P12			(TxD0)/SDO11/TMIOA1/(TMIOB0)/(INTP5)	Use of an on-chip pull-up resistor can be	
P13			TXD2/SDO20/TMIOC1/(TMIOD1)/lrTxd	specified	
D1.4	I/ O	Input port	RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(S	by a software setting at input port.	
P14	1/ 0		CLA0)/IrRxd	Input of P10 and P14 to P17 can be set to TTL	
P15			SCLK20/SCL20/TMIOD0/ (SDAA0)	input buffer.	
DAG			TI01/TO01/INTP5/TMIOC0/(SDI00)/	Output of P10, P11, P13 to P15, and P17 can	
P16			(RXD0) /(TMIOA1)	be set to N-ch open-drain output (EV _{DD}	
D47			TI02/TO02/TMIOA0/TMCLK/(SDO00)	tolerance).	
P17			/(TXD0)/(TMIOD0)	P10 and P11 can be set to analog input.	
P20			ANIO/AVREFP/VCIN12/(INTP11)		
P21			ANI1/AVREFM/VCIN13		
P22			ANI2/ANO0/PGA0IN/VCIN0	Port 2.	
P23		Analog	ANI3/ANO1/PGA0GND	8-bit I/O port.	
P24	I/ O	function	ANI4/PGA1IN	Input/output can be specified in 1-bit units.	
P25			ANI5/PGA1GND	Can be set to analog input.	
P26			ANI6		
P27			ANI7		
Boo			INTP3/RTC1HZ/SCLK00/SCL00/TAO	Port 3.	
P30		Input port	/(TMIOB1)	2-bit I/O port.	
				Input/output can be specified in 1-bit units.	
	I/ O			Use of an on-chip pull-up resistor can be	
P31			TI03/TO03/INTP4/(CLKBUZ0)/(TAIO)	specified by a software setting at input port.	
			/VCOUT1	Input of P30 can be set to TTL input buffer.	
				Output of P30 can be set to N-ch Open-drain	
				output (EV _{DD} tolerance).	

(2/2)

Function Name	I/O	After Reset Release	Alternate Function	Function (2/2)	
P40			SWDIO/TXD0	Port 4	
P41			(TAIO)	6-bit I/O port.	
P42			(INTP8)	Input/output can be specified in 1-bit units.	
P43			(INTP9)/SCLK31/SCL31	Use of an on-chip pull-up resistor can be	
P44	I/O	Input port	SDA31/SDI31	specified by a software setting at input port.	
P45			SDO31	Input of P43 and P44 can be set to TTL input buffer. Output of P43 and P44 can be set to N-ch Open-drain output (EVDD tolerance).	
P50			INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO)	Port 5	
1 30			/(TMIOC1)/(CRxD0)	6-bit I/O port.	
P51	I/ O	Input port	INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CT xD0)	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.	
P52	1// 0		(INTP1)	Input of P50 and P55 can be set to TTL input	
P53			(INTP2)	buffer.	
P54			(INTP3)	Output of P50, P51 and P55 can be set to N-	
P55			(INTP4)/(CLKBUZ1)/(SCLK00)	ch Open-drain output (EV _{DD} tolerance).	
P60			SCLA0		
P61			SDAA0	Port 6	
P62			SS00/SCLA1	8-bit I/O port.	
P63			SDAA1	Input/output can be specified in 1-bit units.	
P64	I/ O	Input port	TI10/TO10/CTxD1	Output of P60 to P63 can be set to N-ch O	
P65			TI11/TO11/CRxD1	drain output (6V tolerance). P64~ P67 input port can use internal pull	
P66			TI12/TO12	resistance through software setting.	
P67			TI13/TO13		
P70			KR0/SCLK21/SCL21/(VCOUT1)		
P71			KR1/SDI21/SDA21/(VCOUT0)	Port 7.	
P72			KR2/SDO21	8-bit I/O port.	
P73			KR3/SDO01	Input/output can be specified in 1-bit units.	
P74	I/ O	Input port	KR4/INTP8/SDI01/SDA01	Use of an on-chip pull-up resistor can be	
P75			KR5/INTP9/SCLK01/SCL01	specified by a software setting at input port. Output of P71 and P74 can be set to N-ch	
P76			KR6/INTP10/(RxD2)	open-drain output (EV _{DD} tolerance).	
P77			KR7/INTP11/(TxD2)		
P100	I/ O	Analog function	ANI16/TI14/TO14	Port 10. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.	
P110	I/ O	Input port	TI15/TO15	Port 11.	
	i .	1	1		

P111			TI16/TO16	2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P120	I/O	Analog function	ANI14/VCOUT0	Port 12. 1-bit I/O port and 2-bit input-only port.
P121			X1	For only P120, input/output can be specified.
P122	1		X2/EXCLK	For only P120, use of an on-chip pull-up resistor can be specified by a software
P123		Input port	XT1	setting at input port. P120 can be set to
P124			XT2/EXCLKS	analog input.
P130	0	Output port	_	Port 13.
P136			_	1-bit I/O port and 2-bit input-only port.
P137	I/O Input port		INTP0/SWCLK/(SDI00)/(RXD0)	P136 and P137 can be designated as input or output in bit units. The input port can be set by software, using internal pull-up resistors.
P140			CLKBUZ0/INTP6	Port 14.
P141			CLKBUZ1/INTP7	7-bit I/O port. Input/output can be specified in 1-bit units.
P142		Input port	SCLK30/SCL30	Use of an on-chip pull-up resistor can be
P143	I/O		SDI30/RxD3/SDA30	specified by a software setting at input port. Input of P142 and P143 can be set to TTL
P144			SDO30/TxD3	input of P142 and P143 can be set to T1L input buffer.
P146		Analog	ANI15	Output of P142, P143, and P144 can be set to
P147		function	ANI12/VREF0	N-ch open-drain output (EV _{DD} tolerance). P146 and P147 can be set to analog input
P150		Analog function	ANI17	Port 15.
P151	I/ O		ANI18	4-bit I/O port. Input/output can be specified in 1-bit units.
P152			ANI19	Use of an on-chip pull-up resistor can be
P153	1		ANI20	specified by a software setting at input port. Can be set to analog input
RESETB	I	_	_	Input-only pin for external reset. Connect to V _{DD} directly or via a resistor when external reset is not used.

Remark:

- 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).
- 2. Description of Alternate function, please refer to "4.2 Port Multiplexing Function".
- 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register

4.2 Port Multiplexing Function

(1/2)

Function name	Input/output	Function
ANIO ~ ANI20	input	Analog input of A/D converter
ANO0, ANO1	output	D/A converter output
		External interrupt request input
INTP0 ~ INTP11	input	Designation of valid edges: rising edge, falling edge,
		rising and falling double edges
VCIN0	input	Analog voltage input of comparator 0
VCIN10, VCIN11, VCIN12, VCIN13	input	Comparator1's analog voltage/reference voltage input
VREF0	input	Reference voltage input of comparator0
VCOUT0, VCOUT1	output	Comparator output
PGA0IN, PGA1IN	input	PGA input
PGA0GND, PGA1GND	input	PGA reference input
KR0 ~ KR7	input	Key interrupt input
CLKBUZ0, CLKBUZ1	output	Clock output / buzzer output
RTC1HZ	output	Real-time clock correction clock (1Hz) output
	input	Low-level active system reset input. When external reset is not used, it
RESETB		must be connected to V_{DD} directly or through a resistor.
CRxD0, CRxD1	input	CAN serial data input
CTxD0, CTxD1	output	CAN serial data output
RxD0 ~ RxD3	input	Serial interface UART0, UART1, UART2 serial data input
TxD0 ~ TxD3	output	Serial interface UART0, UART1, UART2 serial data output
SCL00, SCL01, SCL10, SCL11, SCL20, SCL21,	output	Serial interface IIC00, IIC01, IIC10, IIC11, IIC20, IIC21, IIC30, IIC31
SCL30, SCL31		serial clock output
SDA00, SDA01, SDA10, SDA11, SDA20, SDA21,	input / output	Serial interface IIC00, IIC01, IIC10, IIC11, IIC20, IIC21, IIC30, IIC31 serial clock input/ output
SDA30, SDA31 SCLK00, SCLK01, SCLK10,		Serial interface SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21,
SCLK11, SCLK20, SCLK21, SCLK30, SCLK31	input / output	SSPI30, SSPI31 serial clock input/ output
SDI00, SDI01, SDI10, SDI11, SDI20, SDI21, SDI30, SDI31	input	Serial interface SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21, SSPI30, SSPI31 serial clock input/ output

(2/2)

Function name	Input/output	Function
SS00	input	Chip select input of serial interface SSPI00
SDO00, SDO01, SDO10, SDO11, SDO20, SDO21,	output	Serial data output of SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21, SSPI30, SSPI31
SDO30, SDO31 SCLA0, SCLA1	input / output	Serial interface IICA0, IICA1 clock input/output
SDAA0, SDAA1	input / output	Serial interface IICA0, IICA1 serial data input/output
TI00~ TI03	input	16-bit timer Timer4 external count clock/capture trigger input
TO00~ TO03	output	Timer output of 16-bit timer Timer4
TI10~ TI17	input	16-bit timer Timer8 external count clock/capture trigger input
TO10~ TO17	output	Timer output of 16-bit timer Timer8
TAIO	input / output	Timer TimerA input/output
TAO	output	Timer TimerA output
TMCLK	input	Timer TimerM external clock input
TMIOA0, TMIOB0, TMIOC0, TMIOD0, TMIOA1, TMIOB1, TMIOC1, TMIOD1	input / output	Timer TimerM input/output
TBIO0, TBIO1	input / output	Timer TimerB input/output
TBCLK0, TBCLK1	input	Timer TimerB external clock input
X1, X2	_	Connect the resonator for the main system clock.
EXCLK	input	External clock input of main system clock
XT1, XT2	_	Connect the resonator for the subsystem clock.
EXCLKS	input	External clock input for subsystem clock
V _{DD}	_	<48-pin product>: Power supply for all pins <64, 80 pin product>: Power supply for P20~P27, P121~P124, P137 and RESETB pins
EV _{DD}	_	Power supply for port pins (except P20~P27, P121~P124, P137 and RESETB)
AVREFP	input	Positive (+) reference voltage input of A/D converter
AVREFM	input	Negative (-) reference voltage input of A/D converter
Vss	_	<48-pin product>: Ground potential of all pins <64, 80 pin product>: Ground potential of P20~P27, P121~P124, P137 and RESETB pin
EVss	_	Ground potential of port pins (except P20~P27, P121~P124, P137 and RESETB)
SWDIO	input / output	SWD data interface
SWCLK	input	SWD clock interface

Remark: As a countermeasure for noise and locking, the bypass capacitor (about 0.1uF) must be connected with the shortest distance between V_{DD}-V_{SS} and EV_{DD}-EV_{SS} and thicker wiring.

5 Function Summary

5.1 ARM® Cortex®-M0+ Core

ARM's Cortex-M0+ processor is a new generation of ARM processors for embedded systems. It provides a low-cost platform designed to meet the needs of a small pin count and low-power microcontroller, while providing excellent computing performance and advanced system response to interrupts.

The 32-bit RISC processor of the Cortex-M0+ processor provides excellent code efficiency and the expected high performance of the ARM core, which is different from 8-bit and 16-bit devices of the same memory size. The Cortex-M0+ processor has 32 address lines and a storage space of up to 4G.

The Cortex-M0+ processor equipped with this product integrates the MPU memory protection unit: provides hardware management and protection of memory, and controls access rights. In addition, it also integrates the MTB on-chip tracking unit: users can experience better tracking and debugging, optimized exception capture mechanism, and can locate bugs more quickly.

BAT32G139 uses an embedded ARM core, so it is compatible with all ARM tools and software.

5.2 Memory

5.2.1 Flash

BAT32G139 has a built-in flash memory that can be programmed, erased and rewritten. Has the following functions:

- > Programs and data share 256K storage space.
- 2.5KB dedicated data Flash memory
- Support page erasing, each page size is 512byte, erasing time 4ms
- > Support byte/half-word/word (32bit) programming, programming time 24us

5.2.2 **SRAM**

BAT32G139 has built-in 32K bytes of embedded SRAM.

5.3 Enhanced DMA Controller

Built-in enhanced DMA (Direct Memory Access) controller can realize the function of data transfer between memories without using CPU.

- It supports the start of DMA through peripheral function interrupts, and can realize real-time control through communication, timer and A/D.
- The transmission source/destination area is optional for the entire address space range (when the flash area is used as the destination address, the flash needs to be preset to the programming mode).
- > Supports 4 transfer modes (normal transfer mode, repetitive transfer mode, block transfer mode and chain transfer mode).

5.4 Linkage Controller

The linkage controller links each peripheral function output event with the peripheral function trigger source. So as to realize the coordinated operation between peripheral functions without using the CPU.

The linkage controller has the following functions:

The linkage controller has the following functions:

- > The event signals can be linked together to realize the linkage of peripheral functions.
- 23 types of event input, 10 types of event trigger.

5.5 Clock Generation and Start

The clock generation circuit is a circuit that generates a clock for the CPU and peripheral hardware. There are the following 3 types of system clocks and clock oscillation circuits.

5.5.1 Main System Clock

- > X1 oscillator circuit: It can generate 1-20MHz clock oscillation by connecting a resonator to the pins (X1 and X2), and can stop the oscillation by executing a deep sleep command or setting MSTOP.
- ➤ High-speed internal oscillator (high-speed OCO): The frequency can be selected for oscillation by the option byte. After the reset is released, the CPU defaults to start running with this high-speed internal oscillator clock. Oscillation can be stopped by executing a deep sleep instruction or setting the HIOSTOP bit. The frequency set by the option byte can be changed through the frequency selection register of the high-speed internal oscillator. The highest frequency is 64Mhz, and the accuracy is ±1.0%.
- ➤ Input the external clock from the pin (X2): (1~20MHz), and the input of the external main system clock can be disabled by executing the deep sleep instruction or setting the MSTOP bit.

5.5.2 Subsystem Clock

- > XT1 oscillator circuit: It can generate 32.768KHz clock oscillation by connecting a 32.768KHz resonator to the pins (XT1 and XT2), and the oscillation can be stopped by setting the XTSTOP bit.
- ➤ Input the external clock from the pin (XT2): 32.768KHz, and the input of the external clock can be disabled by setting the XTSTOP bit.

5.5.3 Low-speed Internal Oscillator Clock

- Low-speed internal oscillator (low-speed OCO): generates 15KHz (TYP.) clock oscillation. The low-speed internal oscillator clock can be used as the CPU clock. The following peripheral hardware can be run by the low-speed internal oscillator clock:
- Watchdog timer (WWDT)
- Real Time Clock (RTC)
- > 15-bit interval timer
- TimerA

5.5.4 PLL

> PLL: can be used as system clock. The source clock of the PLL can be either an external clock or an internal high-speed oscillator clock.

5.6 Power Management

5.6.1 Power Supply Mode

 V_{DD} : external power supply, voltage range 1.8 to 5.5V

EV_{DD}: external power supply, voltage range 1.8 to 5.5V

The voltage of the V_{DD} pin must be equal to the voltage of the EV_{DD} pin.

5.6.2 Power-on Reset

The power-on reset circuit (POR) has the following functions:

- An internal reset signal is generated when the power is turned on. If the power supply voltage (V_{DD}) is greater than the detection voltage (V_{POR}), the reset is released. However, before reaching the operating voltage range, the reset state must be maintained through a voltage detection circuit or an external reset.
- The power supply voltage (V_{DD}) and the detection voltage (V_{PDR}) are compared. When V_{DD}<V_{PDR}, an internal reset signal is generated. However, when the power supply drops, it must be shifted to the deep sleep mode before it falls below the operating voltage range, or set to the reset state through a voltage detection circuit or an external reset. If you want to restart operation, you must confirm that the power supply voltage has returned to the operating voltage range.

5.6.3 Voltage Detection

The voltage detection circuit sets the operation mode and detection voltage (V_{LVDH} , V_{LVDL} , V_{LVD}) through the option byte. The voltage detection (LVD) circuit has the following functions:

- Compare the power supply voltage (V_{DD}) with the detection voltage (V_{LVDH}, V_{LVDL}, V_{LVD}) and generate an internal reset or interrupt request signal.
- The detection voltage of the power supply voltage (V_{LVDH}, V_{LVDL}, V_{LVD}) can select the detection level by the option byte.
- Can run in deep sleep mode.
- When the power supply rises, before reaching the operating voltage range, the reset state must be maintained through a voltage detection circuit or an external reset. When the power supply drops, it must be transferred to the deep sleep mode before being lower than the operating voltage range, or set to the reset state through a voltage detection circuit or an external reset.
- > The operating voltage range varies according to the setting of the user option byte.

5.7 Low Power Consumption Mode

BAT32G139 supports two low-power modes to achieve the best compromise between low power consumption, short startup time, and available wake-up sources:

- Sleep mode: Enter the sleep mode by executing the sleep command. The sleep mode is a mode in which the CPU operating clock is stopped. Before setting the sleep mode, if the high-speed system clock oscillator circuit, high-speed internal oscillator, or subsystem clock oscillator circuit is oscillating, each clock continues to oscillate. Although this mode cannot reduce the operating current to the level of the deep sleep mode, it is an effective mode when you want to restart processing immediately through an interrupt request or when you want to perform intermittent operation frequently.
- Deep sleep mode: Enter the deep sleep mode by executing the deep sleep command. The deep sleep mode is a mode to stop the oscillation of the high-speed system clock oscillation circuit and the high-speed internal oscillator and stop the entire system. Can greatly reduce the operating current of the chip. Because the deep sleep mode can be cancelled by an interrupt request, intermittent operation is also possible. However, in the case of the X1 clock, because it is necessary to ensure the wait time for stable oscillation when releasing the deep sleep mode, if you must start processing immediately with an interrupt request, you must select the sleep mode.

In either mode, the registers, flags, and data memory all retain the contents before the standby mode, and also maintain the status of the output latch and output buffer of the input/output port.

5.8 Reset Function

The following 7 methods to generate a reset signal:

- 1) Input external reset through RESETB pin.
- 2) Generate an internal reset through the program runaway detection of the watchdog timer.
- 3) The internal reset is generated by comparing the power supply voltage of the power-on reset (POR) circuit and the detection voltage.
- 4) The internal reset is generated by comparing the power supply voltage of the voltage detection circuit (LVD) and the detection voltage.
- 5) Internal reset due to RAM parity error.
- 6) Internal reset due to access to illegal memory.
- 7) Software reset

The internal reset is the same as the external reset. After the reset signal is generated, the program is executed from the addresses written in addresses 0000H and 0001H.

5.9 Interrupt Function

The Cortex-M0+ processor has a built-in nested vectored interrupt controller (NVIC), which supports up to 32 interrupt request (IRQ) inputs and 1 non-maskable interrupt (NMI) input. In addition, the processor also supports multiple internal exceptions.

This product has processed 32 maskable interrupt requests (IRQ) and 1 non-maskable interrupt (NMI), and can support up to 96 maskable interrupt sources and one non-maskable interrupt source. The actual number of interrupt sources varies from product to product.

		48-pin	64-pin	80-pin
Maakabla interrupt	external	11	12	12
Maskable interrupt	internal	33	33	44

5.10 Real Time Clock (RTC)

The real-time clock (RTC) has the following functions.

- Counter with year, month, week, day, hour, minute and second.
- Fixed period interrupt function (period: 0.5 second, 1 second, 1 minute, 1 hour, 1 day, 1 month)
- Alarm interrupt function (alarm clock: week, hour, minute)
- > 1Hz pin output function
- Support the division of the subsystem clock or the main system clock as the running clock of the RTC
- The real-time clock interrupt signal (INTRTC) can be used as a wake-up from deep sleep mode
- Support a wide range of clock correction functions

Only when the sub-system clock (32.768KHz) or the divided frequency of the main system clock is selected as the running clock of the RTC, the year, month, week, day, hour, minute and second can be counted. When the low-speed internal oscillator clock (15KHz) is selected, only the fixed cycle interrupt function can be used.

5.11 Watchdog Timer

1 channel WWDT, 17bit watchdog timer is set to count operation by option byte. The watchdog timer runs on the low-speed internal oscillator clock (15KHz). The watchdog timer is used to detect program runaway. When a program out of control is detected, an internal reset signal is generated.

The following conditions are judged to be out of control of the program:

- When the watchdog timer counter overflows
- When a 1-bit operation instruction is executed on the enable register (WDTE) of the watchdog timer
- When writing data other than "ACH" to the WDTE register
- When writing data to the WDTE register while the window is closed

5.12 SysTick Timer

This timer is dedicated to the real-time operating system, but it can also be used as a standard down counter. Its characteristics are: when the 24-bit down counter self-filling capacity counter reaches 0, a maskable system interrupt is generated.

www.mcu.com.cn 30 / 81 Rev 1.0.8

5.13 Timer Timer4

This product has built-in timer unit timer4 which contains 4 16-bit timers. Each 16-bit timer is called a "channel", which can be used as an independent timer or combined with multiple channels for advanced timer functions.

For details of each function, please refer to the table below:

Independent channel operation function	Multi-channel linkage operation function
Interval timer	One-shot pulse output
Square wave output	PWM output
External event counter	Multiple PWM output
Frequency divider	
Measurement of input pulse interval	
Measurement of the high/low level width of the	
input signal	
Delay counter	

5.13.1 Independent Channel Operation Function

The independent channel operation function is a function that can independently use any channel without being affected by the operation mode of other channels. The independent channel operation function can be used in the following modes:

- Interval timer: Can be used as a reference timer that generates interrupts (INTTM) at regular intervals.
- 2) Square wave output: Whenever an INTTM interrupt is generated, a flip is triggered, and a square wave with a 50% duty cycle is output from the timer output pin (TO).
- 3) External event counter: Count the valid edge of the input signal of the timer input pin (TI), and if it reaches the specified number of times, it can be used as an event counter to generate an interrupt.
- 4) Frequency divider function (only limited to channel 0 of unit 0): divide the input clock of the timer input pin (TI00), and then output from the output pin (TO00).
- 5) Input pulse interval measurement: start counting at the valid edge of the input pulse signal of the timer input pin (TI) and capture the count value at the valid edge of the next pulse to measure the interval of the input pulse.
- 6) Measurement of the high/low level width of the input signal: start counting on one edge of the input signal of the timer input pin (TI) and capture the count value on the other edge to measure the high or low level of the input signal Width.
- 7) Delay counter: start counting at the valid edge of the input signal of the timer input pin (TI) and generate an interrupt after any delay period has elapsed.

www.mcu.com.cn 31 / 81 Rev 1.0.8

5.13.2 Multi-channel Linkage Operation Function

Multi-channel linkage operation function can be realized by combining the master channel (the basic timer of the main control cycle) and the slave channel (the timer that follows the master control channel). Multi-channel linkage operation function can be used in the following modes:

- 1) One-shot pulse output: Use two channels in pairs to generate one-shot pulses that can set the output timing and pulse width arbitrarily.
- 2) PWM (Pulse Width Modulation) output: Use 2 channels in pairs to generate pulses with a period and duty cycle that can be set arbitrarily.
- 3) Multiple PWM (Pulse Width Modulation) output: It can generate up to 3 kinds of PWM signals with any duty cycle in a fixed cycle by expanding the PWM function and using 1 master channel and multiple slave channels.

5.13.3 8-bit Timer Operation Function

The 8-bit timer operation function can use the 16-bit timer channel as a function of two 8-bit timer channels. (Only channel 1 and channel 3 can be used)

5.13.4 LIN-bus Support Function

The timer4 unit can be used to check whether the received signal in LIN-bus communication is suitable for the LIN-bus communication format.

- 1) Wake-up signal detection: Start counting on the falling edge of the input signal of the UART serial data input pin (RxD) and capture the count value on the rising edge to measure the low-level width. If the low-level width is greater than or equal to a certain fixed value, it is considered as a wake-up signal.
- 2) Interval field detection: After detecting the wake-up signal, start counting from the falling edge of the input signal of the UART serial data input pin (RxD) and capture the count value on the rising edge to measure the low-level width. If the width of the low level is greater than or equal to a certain fixed value, it is regarded as an interval field.
- 3) Synchronous field pulse width measurement: After detecting the interval field, measure the low-level width and high-level width of the input signal of the UART serial data input pin (RxD). Calculate the baud rate based on the bit interval of the sync field measured in this way.

www.mcu.com.cn 32 / 81 Rev 1.0.8

5.14 Timer Timer8

The product has a built-in timer unit timer8 with 8 16-bit timers. Each 16-bit timer is called a "channel", which can be used as an independent timer or combined with multiple channels for advanced timer functions.

5.14.1 Independent Channel Operation Function

The independent channel operation function is a function that can independently use any channel without being affected by the operation mode of other channels. The independent channel operation function can be used in the following modes:

- 1) Interval timer: Can be used as a reference timer that generates interrupts (INTTM) at regular intervals.
- 2) Square wave output: Whenever an INTTM interrupt is generated, a flip is triggered, and a square wave with a 50% duty cycle is output from the timer output pin (TO).
- 3) External event counter: Count the valid edge of the input signal of the timer input pin (TI), and if it reaches the specified number of times, it can be used as an event counter to generate an interrupt.
- 4) Input pulse interval measurement: start counting at the valid edge of the input pulse signal of the timer input pin (TI) and capture the count value at the valid edge of the next pulse to measure the interval of the input pulse.
- 5) Measurement of the high/low level width of the input signal: start counting on one edge of the input signal of the timer input pin (TI) and capture the count value on the other edge to measure the high or low level of the input signal Width.
- 6) Delay counter: start counting at the valid edge of the input signal of the timer input pin (TI) and generate an interrupt after any delay period has elapsed.

5.14.2 Multi-channel Linkage Operation Function

Multi-channel linkage operation function can be realized by combining the master channel (the basic timer of the main control cycle) and the slave channel (the timer that follows the master control channel). Multi-channel linkage operation function can be used in the following modes:

- 1) One-shot pulse output: Use two channels in pairs to generate one-shot pulses that can set the output timing and pulse width arbitrarily.
- 2) PWM (Pulse Width Modulation) output: Use 2 channels in pairs to generate pulses with a period and duty cycle that can be set arbitrarily.
- 3) Multiple PWM (Pulse Width Modulation) output: It can generate up to 7 kinds of PWM signals with any duty cycle in a fixed cycle by expanding the PWM function and using 1 master channel and multiple slave channels.

www.mcu.com.cn 33 / 81 Rev 1.0.8

5.14.3 8-bit Timer Operation Function

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3.

5.15 TimerA

This product has a built-in 16bit timer timerA, which is composed of a reload register and a down counter. It can be used in the following working modes:

- Timer mode: count the counting source (the counting source can be a clock or an external event)
- > Pulse output mode: count the counting source and output pulse when overflow
- > Event counter mode: An external event is counted. Operation is possible in DEEPSLEEP mode.
- Pulse width measurement mode: An external pulse width is measured.
- Pulse period measurement mode: An external pulse period is measured.

5.16 TimerM

The product contains 2 channels of 16-bit timer timerM optimized for motor control. It has the following 4 working modes:

- > Timer mode:
 - Input capture function (Transfer the counter value to a register with an external signal as the trigger)
 - Output compare function (Detect register value matches with a counter, and Pin output can be changed at detection)
 - PWM function (Output pulse of any width continuously)
- Reset synchronous PWM mode: Output three-phase waveforms (6) without sawtooth wave modulation and dead time
- Complementary PWM mode: Output three-phase waveforms (6) with triangular wave modulation and dead time
- > PWM3 mode: Output PWM waveforms (2) with a fixed period

5.17 TimerB

TimerB is a 16-bit timer, supports the following three modes:

- Timer mode:
 - Input capture function: Count at the rising edge, falling edge, or both rising/falling edges
 - Output compare function: Low output/high output/toggle output
- > PWM mode: PWM output available with any duty cycle
- > Phase counting mode: Automatic measurement available for the counts of the two-phase encoder

5.18 TimerC

This product has a built-in 16bit timer timerC, which can be triggered by software, comparator or timer timerM to realize the input capture function.

5.19 15-bit Interval Timer

This product has a built-in 15-bit interval timer, which can generate interrupts (INTIT) at any time interval set in advance, and can be used to wake up from deep sleep mode.

5.20 Clock Output/buzzer Output Control Circuit

The clock output controller is used to provide the clock to the peripheral IC, and the buzzer output controller is used to output the square wave of the buzzer frequency. Clock output or buzzer output is realized by dedicated pins.

www.mcu.com.cn 35 / 81 Rev 1.0.8

5.21 Universal Serial Communication Unit

This product has 4 built-in universal serial communication units, and each unit has up to 4 serial communication channels. It can realize the communication functions of standard SPI, simple SPI, UART and simple I²C. Take the 80pin product as an example, the function allocation of each channel is as follows.

5.21.1 3-wire Serial Interface (Simple SPI)

Synchronize data transmission and reception with the serial clock (SCK) output from the master control device.

This is a clock synchronous communication interface that uses 1 serial clock (SCK), 1 sending serial data (SO), and 1 receiving serial data (SI) to communicate with a total of 3 communication lines.

[data transmission and reception]

- 7-bit or 8-bit data length
- Phase control of sending and receiving data
- MSB/LSB priority choice

[clock control]

- Choice of master control or slave
- Phase control of input/output clock
- > The transmission cycle generated by the prescaler and the internal counter of the channel
- Maximum transfer rate

Master communication: Max.F_{CLK}/2 Slave communication: Max.F_{MCK}/6

[Interrupt function]

Transmission end interrupt, buffer empty interrupt

[Error detection flag]

Overflow error

5.21.2 Simple SPI with Slave Chip Select Function

SPI serial communication interface supporting slave chip select input function. This is a clock synchronization that uses a slave chip select input (SSI), a serial clock (SCK), a sending serial data (SO), and a receiving serial data (SI) 4 communication lines for communication. Communication Interface.

[Data sending and receiving]

- > 7-bit or 8-bit data length
- Phase control of sending and receiving data
- MSB/LSB priority choice
- Level setting of sending and receiving data

[clock control]

- Phase control of input/output clock
- > The transmission cycle generated by the prescaler and the internal counter of the channel
- Maximum transfer rate

Slave communication: Max.FMCK/6

[Interrupt function]

Transmission end interrupt, buffer empty interrupt

[Error detection flag]

Overflow error

5.21.3 **UART**

The function of asynchronous communication through two lines of serial data transmission (TxD) and serial data reception (RxD). Use these two communication lines to send and receive data asynchronously (using the internal baud rate) with other communication parties according to the data frame (consisting of start bit, data, parity bit and stop bit). Full-duplex UART communication can be realized by using two channels dedicated for transmission (even-numbered channels) and dedicated for reception (odd-numbered channels), and LIN-bus can be supported by combining timer4 units and external interrupts (INTP0).

[Data sending and receiving]

- > 7-bit, 8-bit or 9-bit data length
- MSB/LSB priority choice
- > Selection of level setting and reverse phase of sending and receiving data
- Additional parity check bit, parity check function
- Additional stop bit, stop bit detection

[Interrupt function]

> Transmission end interrupt, buffer empty interrupt

Error interrupt caused by framing error, parity error or overflow error

[Error detection flag]

Frame error, parity error, overflow error

[LIN-bus function]

- Wake-up signal detection
- BF detection
- > Measurement of synchronization field, calculation of baud rate

5.21.4 Simple I²C

The function of clock synchronization communication with multiple devices through two lines of serial clock (SCL) and serial data (SDA). Because this simple I²C is designed for single communication with flash memory, A/D converters and other devices, it can only be used as a master device. The start condition and stop condition are the same as the operation control register, and must comply with the AC characteristics and be processed by software.

[Data sending and receiving]

- Main control sending, main control receiving (only limited to the main control function of single main control)
- ACK output function, ACK detection function
- 8-bit data length (when sending the address, use the upper 7 bits to specify the address, and use the lowest bit for R/W control)
- Generate start and stop conditions through software

[interrupt function]

End of transmission interrupt

[Error detection flag]

> ACK error, overflow error

[Functions not supported by simple I2C]

- Slave sending, slave receiving
- Multi-master control function (arbitration failure detection function)
- Waiting for detection function

5.22 Standard Serial Interface IICA

The serial interface IICA has the following 3 modes:

- Operation stop mode: This is a mode used when serial transmission is not performed, which can reduce power consumption.
- ▶ I²C bus mode (supports multiple masters): This mode uses 2 lines of serial clock (SCLA) and serial data bus (SDAA) to transmit 8-bit data with multiple devices. In line with the I²C bus format, the master device can generate "start condition", "address", "indication of the transfer direction", "data" and "stop condition" for the slave device on the serial data bus. The slave device automatically detects the received status and data through hardware. This function can simplify the I²C bus control part of the application. Because the SCLA pin and SDAA pin of the serial interface IICA are used as open-drain output, the serial clock line and the serial data bus require a pull-up resistor.
- Wake-up mode: In the deep sleep mode, when the extension code or the local station address from the autonomous control device is received, the deep sleep mode can be released by generating an interrupt request signal (INTIICA). Set through the IICA control register.

5.23 Controller CAN

This product can support up to two general CAN bus interfaces.

www.mcu.com.cn 39 / 81 Rev 1.0.8

5.24 Analog-to-digital Converter (ADC)

This product has a built-in 12-bit resolution analog-to-digital converter SARADC, which can convert analog input to digital value and supports up to 21 channels of ADC analog input (ANI0~ANI20). The ADC contains the following functions:

- ➤ 12-bit resolution, conversion rate 1.42Msps.
- Trigger mode: support software trigger, hardware trigger and hardware trigger in standby state
- > Channel selection: support two modes of single-channel selection and multi-channel scanning
- Conversion mode: support single conversion and continuous conversion
- ➤ Working voltage: Support the working voltage range of 1.8V ≤ V_{DD} ≤ 5.5V
- It can detect the built-in reference voltage (1.45V) and temperature sensor.

ADC can set various A/D conversion modes through the following mode combinations.

	Software trigger	Start the conversion by software operation.
	Hardware trigger no wait mode	Start the conversion by detecting the hardware trigger.
Trigger mode		In the conversion standby state with the power off, the power is
	Hardware trigger wait mode	turned on by detecting the hardware trigger, and the conversion
		starts automatically after the A/D power stabilization wait time.
	Select mode	Select 1 channel of analog input for A/D conversion.
Channel selection		Perform A/D conversion on 4 channels of analog input in
mode	Scan mode	sequence. It is possible to select 4 consecutive channels from
		ANI0 to ANI15 as analog input.
	Single conversion mode	Perform 1 A/D conversion on the selected channel.
Conversion mode	Continuous conversion mode	Perform continuous A/D conversion on the selected channel until it
	Continuous conversion mode	is stopped by software.
Sampling	Number of sampling	The sampling time can be set by the register. The default value of
time/conversion time	clocks/number of conversion	the sampling clock is 13.5 clk, and the Min value of the conversion
time/conversion time	clocks	clock is 31.5 clk.

www.mcu.com.cn 40 / 81 Rev 1.0.8

5.25 Analog to Digital Conversion (DAC)

This product has a built-in 2-channel 8-bit resolution analog-to-digital converter DAC, which can convert digital input to analog signal. Has the following characteristics:

- > 8-bit resolution D/A converter
- > Support the output of two independent analog channels
- R-2R ladder method
- Built-in real-time output function

5.26 Programmable Gain Amplifier (PGA)

This product has two built-in programmable gain amplifiers (PGA0 and PGA1), which have the following functions:

- GAIN: X4, X8, X10, X12, X14, X16, X32
- The external pin (PGAGND) can be selected as the ground of the negative feedback resistance of the PGA (can be used as a differential mode)
- The output of PGA0 can be selected as analog input for A/D converter or analog input for positive terminal of comparator0 (CMP0).
- PGA1 output can be selected as analog input for A/D converter

5.27 Comparator (CMP)

This product has built-in two channels with hysteresis comparatorCMP0 and CMP1, with the following functions:

- > The external input and reference multi-channels of CMP1 are optional.
- Can select external reference voltage input and internal reference voltage for reference voltage.
- The elimination width of the noise elimination digital filter can be selected.
- > Can detect the valid edge of the comparator output and generate an interrupt signal.
- It can detect the valid edge of the comparator output and output the event signal to the linkage controller.

5.28 Two-wire Serial Debug Port (SW-DP)

ARM's SW-DP interface allows to connect to the microcontroller through a serial wire debugging tool.

5.29 Security Function

5.29.1 Flash CRC Calculation Function (High-speed CRC, General-purpose CRC)

Detect the data error of flash memory through CRC operation.

According to different purposes and conditions of use, the following 2 CRCs can be used respectively.

- High-speed CRC: In the initialization program, it can stop the operation of the CPU and check the entire code flash area at high speed.
- General CRC: In CPU operation, it is not limited to the code flash area but can be used for multi-purpose checking.

5.29.2 RAM Parity Error Detection Function

When reading RAM data, detect parity errors.

5.29.3 SFR Protection Function

Prevent the important SFR (Special Function Register) from being rewritten due to CPU runaway.

5.29.4 Illegal Memory Access Detection Function

Detect illegal access to illegal memory area (area without memory or area with restricted access).

5.29.5 Frequency Detection Function

Can use timer4 unit to self-check CPU or peripheral hardware clock frequency.

5.29.6 A/D Test Function

Perform A/D conversion on the A/D converter's positive (+) reference voltage, negative (-) reference voltage, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage Self-test.

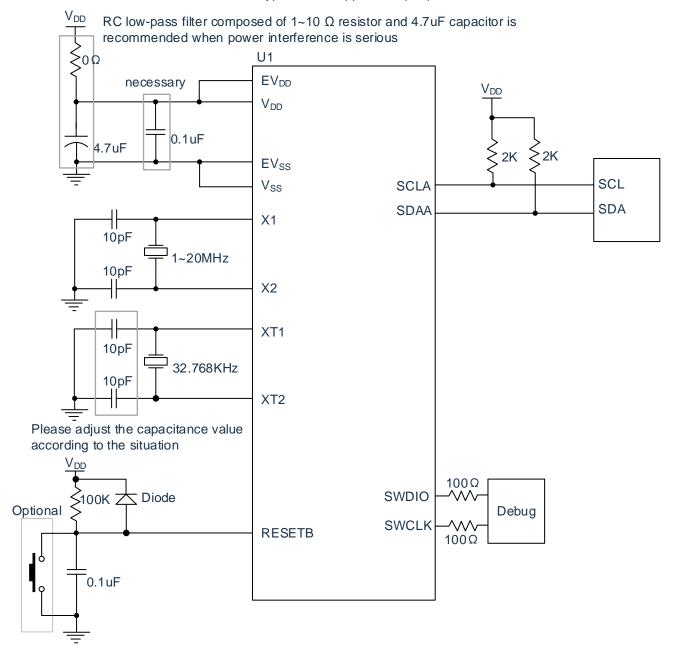
www.mcu.com.cn 42 / 81 Rev 1.0.8

5.29.7 Digital Output Signal Level Detection Function of Input/ output Port

When the input/output port is in output mode, the output level of the pin can be read.

5.30 Key Function

The input pin (KR0~KR7) can be interrupted by the key to generate a key interrupt (INTKR).


www.mcu.com.cn 43 / 81 Rev 1.0.8

6 Electrical Characteristics

6.1 Typical Application Peripheral Circuit

The device connection reference of the typical MCU application peripheral circuit is as follows:

6.2 Absolute Maximum Voltage Rating

 $(T_A = -40 \sim 105^{\circ}C)$

Item	Symbol	Condition	Rating	Unit	
Course velters	V_{DD}	-	-0.5~+6.5	V	
Source voltage	EV _{DD}	-	-0.5~+6.5	V	
		P00~P06, P10~P17, P30, P31, P40~P45,			
	V/	P50~P55, P64~P67, P70~P77	-0.3~EV _{DD} +0.3 and	V	
	V _{I1}	P100, P110~P111, P120, P136,	-0.3~V _{DD} +0.3 Note1	V	
Input voltage		P140~P144, P146~P147			
	V _{I2}	P60~P63(N-channel open drain)	-0.3~+6.5	V	
	V_{I3}	P20~P27, P121~P124, P137, P150~P153,	O O N O O Noto1		
		EXCLKEXCLKS, RESETB	-0.3~V _{DD} +0.3 ^{Note1}	V	
		P00~P06, P10~P17, P30, P31, P40~P45,			
		P50~P55, P60~P67, P70~P77, P100,	-0.3~EV _{DD} +0.3 and	.,,	
Output voltage	V _{O1}	P110~P111, P120, P136, P140~P144,	-0.3~V _{DD} +0.3 Note1	V	
		P146~P147			
	V _{O2}	P20~P27, P137, P150~P153	-0.3~V _{DD} +0.3 Note1	V	
		ANIIO ANIIOO	-0.3~EV _{DD} +0.3 and		
Analog input valtage	V _{AI1}	ANI8~ANI20	-0.3~AV _{REF} (+)+0.3 Note1, 2	V	
Analog input voltage	\/	ANI0~ANI7	-0.3~V _{DD} +0.3 and	V	
	V_{Al2}	ANIO~ANI/	-0.3~AV _{REF} (+)+0.3 Note1, 2	V	

Note1: Do not exceed 6.5V.

Note2: The pin of the A/D conversion target cannot exceed AV_{REF}(+)+0.3.

Note: Even if one of the items exceeds the absolute maximum rating for an instant, the quality of the product may be degraded. The absolute maximum rating is a rating that may cause physical damage to the product, and the product must be used under the condition that the rating is not exceeded.

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. AV_{REF}(+): The positive (+) reference voltage of the A/D converter
- 3. Use V_{SS} as the reference voltage.
- 4. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 45 / 81 Rev 1.0.8

6.3 Absolute Maximum Current Rating

 $(T_A = -40 \sim 105^{\circ}C)$

Item	Symbol		Condition	Rating	Unit
		Each pin	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~P144, P146~P147	-40	mA
High level	Іон1	Total pins	P00~P04, P40~P45, P120, P130, P136, P137, P140~P144	-70	mA
output duriont		-170mA	P05, P06, P10~P17, P30, P31, P50~P55, P64~P67, P70~P77, P100, P110~P111, P146, P147	-100	mA
	I _{OH2}	Each pin	P20~P27, P150~P153	-3	mA
	IOHZ	Total pins	F20~F21, F130~F133	-15	mA
		Each pin	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P60~P67, P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~P144, P146~P147	40	mA
Low-level output current	l _{OL1}	Total pins	P00~P04, P40~P45, P120, P130, P136, P137, P140~P144	100	mA
output current		170mA	P05, P06, P10~P17, P30, P31, P50~P55, P60~P67, P70~P77, P100, P110~P111, P146, P147	120	mA
	I _{OL2}	Total pins	P20~P27, P150~P153	15	mA
	IOL2	Total pins	F20~F21, F130~F133	45	mA
Working	TA	Normally run	Normally run		°C
temperature	IA	When flash pr	When flash programming		
Storage temperature	T _{stg}	-	-		°C

Note: Even if one of the items exceeds the absolute maximum rating for an instant, the quality of the product may be degraded. The absolute maximum rating is a rating that may cause physical damage to the product, and the product must be used under the condition that the rating is not exceeded.

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 46 / 81 Rev 1.0.8

6.4 Oscillation Circuit Characteristics

6.4.1 X1, XT1 Characteristics

 $(T_A = -40 \sim 105^{\circ}C, 1.8V \leq V_{DD} \leq 5.5V, V_{SS} = 0V)$

Item	Resonator	Condition	Min	Тур	Max	Unit	
X1 clock oscillation frequency (Fx)	Ceramic resonator/		1.0		20.0	MHz	
AT Clock oscillation frequency (Fx)	crystal resonator	-	1.0	-	20.0	IVIIIZ	
X1 clock oscillation stabilization time	Ceramic resonator/	20MHz		15		mS	
AT CIOCK OSCINATION STADINZATION TIME	crystal resonator	C=10pF	-	15	-	1113	
X1 clock oscillation feedback resistance	Ceramic resonator/		0.6		1.8	МΩ	
AT Clock oscillation reeuback resistance	crystal resonator	-	0.0	-	1.0	IVI 52	
XT1 clock oscillation frequency (FxT)	Crystal resonator	-	32	32.768	35	KHz	
VT4 shock as cillation atabilization time	Crystal reconstar	32.768KHz		2		٥	
XT1 clock oscillation stabilization time	Crystal resonator	C=10pF	-	2	-	S	

Note:

- 1. It only indicates the allowable frequency range of the oscillation circuit. Please refer to the AC characteristics for the command execution time.
- 2. Please entrust the resonator manufacturer to evaluate after installing the circuit, and use it after confirming the oscillation characteristics.
- The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

6.4.2 Internal Oscillator Characteristics

 $(T_A = -40 \sim 105^{\circ}C, 1.8V \leq V_{DD} \leq 5.5V, V_{SS} = 0V)$

Resonator	Condition	Min	Тур	Max	Unit
High-speed internal oscillator clock frequency (F _{IH}) ^{Note1,2}	-	1.0	-	64.0	MHz
High speed internal oscillator stability time (Tsu)	-	-	12	-	us
	T _A = 10~70°C	-1.0	-	+1.0	%
Clock frequency accuracy of high-speed internal	T _A = -10~105°C	-1.5 ^{Note3}	-	+1.5 ^{Note3}	%
oscillator	T _A = -20~105°C	-2.0 ^{Note3}	-	+2.0 ^{Note3}	%
	T _A = -40~105°C	-4.0 ^{Note3}	-	+4.0 ^{Note3}	%
Clock frequency of low-speed internal oscillator (FiL)	-	10	15	20	KHz

Note:

- 1. Select the frequency of the high-speed internal oscillator by the option byte.
- It only shows the characteristics of the oscillation circuit, please refer to the AC characteristics for the command execution time.

Remark: The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 47 / 81 Rev 1.0.8

6.4.3 PLL Oscillator Characteristics

 $(T_{A}=-40\sim105^{\circ}C, 1.8V \le V_{DD} \le 5.5V, V_{SS}=0V)$

Resonator	Condition	Min	Тур	Max	Unit
PLL input frequency Note1	-	4.0	-	8.0	MHz
PLL lock time	-	40	-	-	us

Note1: It only shows the characteristics of the oscillation circuit, please refer to the AC characteristics for the command execution time.

Remark: The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 48 / 81 Rev 1.0.8

6.5 DC Characteristics

6.5.1 Pin Characteristics

 $(T_A = -40 \sim 105^{\circ}C, 1.8V \leq EV_{DD} = V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V)$

Item	Symbol	Condition		Min	Тур	Max	Unit
		P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67,	1.8V≤EV _{DD} ≤5.5V -40~85°C	-	-	-12.0 ^{Note2}	
		P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~P144, P146~P147 1 pin alone	1.8V≤EV _{DD} ≤5.5V 85~105°C	-	-	-6.0 ^{Note2}	mA
		P00~P04, P40~P45, P120, P130, P136, P137, P140~P144 Total pins	4.0V≤EV _{DD} ≤5.5V -40~85°C	-	-	-60.0	
			4.0V≤EV _{DD} ≤5.5V 85~105°C	-	-	-30.0	mA
		(when duty cycle ≤70% ^{Note3})	2.4V≤EV _{DD} <4.0V	-	-	-12.0	mA
High level	Іон1		1.8V≤EV _{DD} <2.4V	-	-	-6.0	mA
output Current		P05, P06, P10~P17, P30, P31, P50~P55, P64~P67, P70~P77, P100, P110~P111, P146, P147 Total pins (when duty cycle ≤70% ^{Note3})	4.0V≤EV _{DD} ≤5.5V -40~85°C	-	-	-80.0	
Note1			4.0V≤EV _{DD} ≤5.5V 85~105°C	-	-	-30.0	mA
			2.4V≤EV _{DD} <4.0V	-	-	-20.0	mA
		(when duty cycle < 70%	1.8V≤EV _{DD} <2.4V	-	-	-10.0	mA
		Total pins	1.8V≤EV _{DD} ≤5.5V -40~85°C	-	-	-140.0	A
		(when duty cycle ≤70% ^{Note3})	1.8V≤EV _{DD} ≤5.5V 85~105°C	-	-	-60.0	mA
		P20 ~ P27, P150~P153 1 pin alone	1.8V≤V _{DD} ≤5.5V	-	-	-2.5 ^{Note2}	mA
	Іон2	Total pins (when duty cycle ≤70% ^{Note3})	1.8V≤V _{DD} ≤5.5V	-	-	-10	mA

Note1: This is the current value that guarantees the operation of the device even if current flows from the EV_{DD} , V_{DD} pin to the output pin.

Note2: Can not exceed the total current value.

Note3: This is the output current value of "duty cycle ≤70% condition". To change the output current value with a duty cycle > 70% can be calculated with the following calculation formula (when the duty cycle is changed to n%).

The total output current of the pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<example $> I_{OH} = -10.0 \text{mA}, n = 80%$

The total output current of the pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 \text{mA}$

The current of each pin does not change due to the duty cycle, and no current above the absolute

www.mcu.com.cn 49 / 81 Rev 1.0.8

maximum rating will flow.

Note: In the N-channel open-drain mode, the pin set to the N-channel open-drain valid does not output a high level.

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 50 / 81 Rev 1.0.8

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol	Condition		Min	Тур	Max	Unit
		P00~P06, P10~P17, P30, P31,	1.8V≤EV _{DD} ≤5.5V	_	_	35 ^{Note2}	
		P40~P45, P50~P55, P60~P67,	-40~85°C			00	
		P70~P77, P100, P110~P111, P120,					mA
		P130, P136, P137, P140~P144,	1.8V≤EV _{DD} ≤5.5V	_	_	20 Note2	1117 (
		P146~P147	85~105°C			20	
		1 pin alone					
			4.0V≤EV _{DD} ≤5.5V	_	_	100	
		P00~P04, P40~P45, P120, P130, P136,	-40~85°C	_		100	mA
		P137, P140~P144	4.0V≤EV _{DD} ≤5.5V			70	ША
		Total pins	85~105°C	,	_	70	
		(when duty cycle ≤70% ^{Note3})	2.4V≤EV _{DD} <4.0V	-	-	30	mA
Low-level	I _{OL1}		1.8V≤EV _{DD} <2.4V	-	-	15	mA
output		P05, P06, P10~P17, P30, P31, P50~P55, P60~P67, P70~P77, P100,	4.0V≤EV _{DD} ≤5.5V			400	
current ^{Note1}			-40~85°C	-	-	120	- mA
			4.0V≤EV _{DD} ≤5.5V			00	
		P110~P111, P146, P147	85~105°C	-	-	80	
		Total pins (when duty cycle ≤70% ^{Note3})	2.4V≤EV _{DD} <4.0V	-	-	40	mA
		(when duty cycle < 70%	1.8V≤EV _{DD} <2.4V	-	-	20	mA
			1.8V≤EV _{DD} ≤5.5V			450	
		Total pins	-40~85°C	-	-	150	A
		(when duty cycle ≤70% ^{Note3})	1.8V≤EV _{DD} ≤5.5V			400	mA
			85~105°C	-	-	100	
		P20~P27, P150~P153 1 pin alone	1.8V≤V _{DD} ≤5.5V	-	-	10 ^{Note2}	mA
	l _{OL2}	Total pins (when duty cycle ≤70% ^{Note3})	1.8V≤V _{DD} ≤5.5V	-	-	40	mA

Note1: This is the current value that guarantees the operation of the device even if current flows from the output pin to the EVss and Vss pins.

Note2: Can not exceed the total current value.

Note3: This is the output current value of "duty cycle≤70% condition". The output current value with a duty cycle> 70% can be calculated with the following calculation formula (when the duty cycle is changed to n%)

The total output current of the pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<example $> I_{OL} = 10.0 \text{mA}, n = 80%$

The total output current of the pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{mA}$

The current of each pin does not change due to the duty cycle, and no current above the absolute maximum rating will flow.

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 51 / 81 Rev 1.0.8

 $(T_A = -40 \sim 105^{\circ}C, 1.8V \leq EV_{DD} = V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V)$

Item	Symbol	Condition	on	Min	Тур	Max	Unit
	V _{IH1}	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P136, P140~P144, P146~P147	Schmidt input	0.8EV _{DD}	-	EV _{DD}	V
High level input		P01, P03, P04, P10,	TTL input 4.0V≤EV _{DD} ≤5.5V	2.2	-	EV _{DD}	٧
voltage	V _{IH2}	P14~P17, P30, P43~P44, P50, P55, P142~P143	TTL input 3.3V≤EV _{DD} <4.0V	2.0	-	EV _{DD}	٧
		1 30, 1 30, 1 142~1 143	TTL input 1.8V≤EV _{DD} <3.3V	1.5	-	EV _{DD}	V
	V _{IH3}	P20~P27, P137, P150~P153	3	0.7V _{DD}	-	V_{DD}	V
	V _{IH4}	P60~P63		0.7EV _{DD}	-	6.0	V
	V _{IH5}	P121~P124, EXCLK, EXCLKS, RESETB		0.8V _{DD}	-	V_{DD}	V
	V _{IL1}	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P136, P140~P144, P146~P147	Schmidt input	0	-	0.2EV _{DD}	V
Low-level input		D04 D00 D04 D40	TTL input 4.0V≤EV _{DD} ≤5.5V	0	-	0.8	V
voltage	V _{IL2}	P01, P03, P04, P10, P14~P17, P30, P43~P44,	TTL input 3.3V≤EV _{DD} <4.0V	0	-	0.5	٧
		P50, P55, P142~P143	TTL input 1.8V≤EV _{DD} <3.3V	0	-	0.32	٧
	V _{IL3}	P20~P27, P137, P150~P153	3	0	-	0.3V _{DD}	V
	V _{IL4}	P60~P63		0	-	0.3EV _{DD}	V
	V _{IL5}	P121~P124, EXCLK, EXCLK	0	-	0.2V _{DD}	V	

Note: Even in the N-channel open-drain mode, the maximum V_{IH} (MAX.) of the pin that is set to the N-channel open-drain is also EV_{DD} .

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 52 / 81 Rev 1.0.8

 $(T_{A}=-40 \sim 105^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol	Condition	n	Min	Тур	Max	Unit
			4.0V≤EV _{DD} ≤5.5V,	EV _{DD} -1.5	-	_	V
		P00~P06, P10~P17, P30,	I _{OH1} = -12.0mA	L V DD 1.0			v
		P31, P40~P45, P50~P55,	4.0V≤EV _{DD} ≤5.5V,	EV _{DD} -0.7	_	_	V
	V _{ОН1}	P64~P67, P70~P77, P100,	I _{OH1} = -6.0mA	L V DD 0.1			·
	VOITI	P110~P111, P120, P130,	2.4V≤EV _{DD} ≤5.5V,	EV _{DD} -0.6	_	_	V
		P136, P137, P140~P144,	I _{OH1} = -3.0mA	2 1 0 0 0 0			•
		P146~P147	1.8V≤EV _{DD} ≤5.5V,	EV _{DD} -0.5	_	_	V
High level			I _{OH1} = -2mA	2 7 0 0 0 0			•
output voltage			4.0V≤V _{DD} ≤5.5V,	EV _{DD} -1.5	_	_	V
			I _{OH2} = -2.5mA	2 7 0 0 1.0			•
			4.0V≤V _{DD} ≤5.5V,	EV _{DD} -0.7	_	_	V
	V _{OH2}	P20~P27, P150~P153	I _{OH2} = -1.5mA				-
		1 20 1 27,1 100 1 100	2.4V≤V _{DD} ≤5.5V,	EV _{DD} -0.6	_	_	V
			I _{OH2} = -0.5mA				-
			1.8V≤V _{DD} ≤5.5V,	V _{DD} -0.5	_	-	V
			I _{OH2} = -0.4mA	100 010			-
			4.0V≤EV _{DD} ≤5.5V,	-	_	1.2	V
		P00~P06, P10~P17, P30,	I _{OL1} =35.0mA				-
		P31, P40~P45, P50~P55, 4.0V≤EV _{DD} ≤5.5V,		_	_	0.7	V
	V _{OL1}	P60~P67, P70~P77, P100,	I _{OL1} =20.0mA			0	•
	021	P110~P111, P120, P130,	2.4V≤EV _{DD} ≤5.5V,	_	_	0.4	V
		P136, P137, P140~P144,	I _{OL1} =9.0mA			0	-
		P146~P147	1.8V≤EV _{DD} ≤5.5V,	_	_	0.4	V
Low-level			I _{OL1} =6.0mA			0.1	•
output voltage			4.0V≤V _{DD} ≤5.5V,	_	_	1.2	V
			I _{OL2} =10.0mA				-
			4.0V≤V _{DD} ≤5.5V,	_	_	0.7	V
	V _{OL2}	P20~P27, P150~P153	I _{OL2} =6.0mA			0.7	•
	V 0L2	. 25 . 27,7 100 . 100	2.4V≤V _{DD} ≤5.5V,	_	_	0.4	V
			I _{OL2} =2.5mA			J.,	,
			1.8V≤V _{DD} ≤5.5V,	_	_	0.4	V
			I _{OL2} =2.0mA				•

Note: In the N-channel open-drain mode, the pin set to the N-channel open-drain valid does not output a high level.

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 53 / 81 Rev 1.0.8

 $(T_{A}=-40\sim105^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol	Cond	dition	Min	Тур	Max	Unit
High-level input	ILIH1 P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P60~P67, P70~P77, P100, P110~P111, P120, P130, P136, P140~P144, P146~P147		V _I =EV _{DD}	-	-	1	uA
leakage current	I _{LIH2}	P20~P27, P137, P150~P153, RESETB	V _I =V _{DD}	-	-	1	uA
		P121~P124 (X1, X2,	V _I =V _{DD} , when input port and external clock input	-	-	1	uA
	I _{LIH3}	EXCLK, XT1, XT2, EXCLKS)	V _I =V _{DD} , when the resonator is connected	-	-	10	uA
Low-level input	I _{LIL1}	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P60~P67, P70~P77, P100, P110~P111, P120, P130, P136, P140~P144, P146~P147	V _I =EV _{SS}	-	-	-1	uA
leakage current	I _{LIL2}	P20~P27, P137, P150~P153, RESETB	V _I =V _{SS}	-	1	-1	uA
	ILIL3	P121~P124 (X1, X2, EXCLK, XT1, XT2,	V _I =V _{SS} , when input port and external clock input	1	1	-1	uA
	ILIL3	EXCLKS)	V _I =V _{SS} , when the resonator is connected	1	1	-10	uA
Internal pull-up resistor	Rυ	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P136, P137, P140~P144, P146~P147	V _I =EV _{SS} , when input port	10	30	100	kΩ

Remark:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 54 / 81 Rev 1.0.8

6.5.2 Power Supply Current Characteristics

 $(T_{A}=-40\sim105^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol		Co	ondition		Min	Тур	Max	Unit
			I limb and	F _{HOCO} =64MHz, F	IH=64MHz Note3	-	7.6	12	
			High-speed internal oscillator	F _{HOCO} =48MHz, F	IH=48MHz Note3	-	7.0	10	mA
			Internal Oscillator	F _{HOCO} =32MHz, F	IH=32MHz Note3	-	6.0	7.8	
	I_{DD1}	Operating mode	High-speed main	F _{MX} =20MHz	Input square wave	1	4.0	5.2	
		mode	system clock	Note2	Connect the crystal	-	4.0	5.2	mA
			Subsystem clock	F _{SUB} =32.768KHz	Input square wave	-	70	85	
			operation	Note4	Connect the crystal	ı	70	85	uA
				F _{HOCO} =64MHz, F	IH=64MHz Note3	-	2.0	6.8	
current ^{Note1}			High-speed internal oscillator	F _{HOCO} =48MHz, F	IH=48MHz Note3	-	1.6	5.0	mA
				F _{HOCO} =32MHz, F _{IH} =32MHz Note3		-	1.2	3.5	
	I_{DD2}	Sleep mode	High-speed main	F _{MX} =20MHz Note2	Input square wave	-	0.7	2.2	A
			system clock	FMX=ZUMHZ Nooz	Connect the crystal	1	0.7	2.2	mA
			Subsystem clock	F _{SUB} =32.768KHz	Input square wave	1	1.2	24	uA
			operation	Note5	Connect the crystal	1	1.2	24	uA
		Deep sleep mode Note7	T _A = -40°C~25°C	T _A = -40°C~25°C V _{DD} =3.0V		-	0.8	1.4	
	I _{DD3} Note6		T _A = -40°C~85°C	V _{DD} =3.0V		ı	0.8	15	uA
			T _A = -40°C~105°C	: V _{DD} =3.0V		-	0.8 22		

Note1: Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values of the TYP. column include the current of the CPU executing the multiplication instruction (I_{DD1}), not including the peripheral operation current. The values below the MAX. column include the current of the CPU executing the multiplication instruction (I_{DD1}) and the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

Note2: This is the case when the high-speed internal oscillator and the subsystem clock stop oscillating.

Note3: This is the case where the high-speed main system clock and subsystem clock stop oscillating.

Note4: This is the case when the high-speed internal oscillator and the high-speed main system clock stop oscillating.

Note5: This is the case when the high-speed internal oscillator and the high-speed main system clock stop oscillating. Contains the current flowing to the RTC, but does not include the 15-bit interval timer and watchdog timer current

Note6: Does not include current to RTC, 15-bit interval timer and watchdog timer.

Note7: For the current value when the subsystem clock is running in the deep sleep mode, please refer to the current value when the subsystem clock is running in the sleep mode.

Remark:

1. FHOCO: The clock frequency of the high-speed internal oscillator, Fih: the system clock frequency provided by the high-speed internal oscillator.

www.mcu.com.cn 55 / 81 Rev 1.0.8

- 2. F_{SUB}: External subsystem clock frequency (XT1/XT2 clock oscillation frequency).
- 3. F_{MX}: External main system clock frequency (X1/X2 clock oscillation frequency).
- 4. TYP. The temperature condition of the value is $T_A=25$ °C.
- 5. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Parameter	Symbol		Condition	Min	Тур	Max	Unit
Low-speed internal oscillator operating current	I _{FIL} Note1		-	-	0.2	-	uA
RTC operating current	I _{RTC} Note1,2,3		-	-	0.04	-	uA
15-bit interval timer operating current	I _{IT} Note 1,2,4	-			0.02	-	uA
Watchdog timer operating current	I _{WDT} Note 1,2,5	F _{IL} =15KHz			0.22	-	uA
A/D converter operating		ADC HS mode @64MHz		-	2.2	1	mA
	I _{ADC} Note 1,6	ADC HS mode	e @4MHz	-	1.3	ı	mA
current		ADC LC mode @24MHz		-	1.1	ı	mA
		ADC LC mode @4MHz		-	0.8	1	mA
D/A converter operating current	I _{DAC} Note 1,8	Each channel		-	1.4	-	mA
PGA operating current		Each channel		-	480	700	uA
comparator operating current	ICMP Note 1,9	Each	Does not use internal reference voltage	-	60	100	uA
comparator operating current	ICMP Note 1,0	channel	Use internal reference voltage	-	80	140	uA
LVD operating current	I _{LVD} Note 1,7		-	-	0.08	ı	uA

Note1: This is the current flowing through V_{DD} .

Note2: This is the case when the high-speed internal oscillator and the high-speed system clock stop oscillating.

Note3: This is the current that only flows to the real-time clock (RTC) (not including the operating current of the low-speed internal oscillator and XT1 oscillator circuit). When the real-time clock is running in running mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the value of I_{RTC}. In addition, when low-speed internal oscillator is selected, I_{FIL} must be added. I_{DD2} when the subsystem clock is running contains the operating current of the real-time clock.

Note4: This is the current that only flows to the 15-bit interval timer (not including the operating current of the low-speed internal oscillator and XT1 oscillator circuit). When the 15-bit interval timer is running in run mode or sleep mode, the current value of the microcontroller is the value of I_{DD1} or I_{DD2} plus IIT. In addition, when low-speed internal oscillator is selected, I_{FIL} must be added.

Note5: This is the current that only flows to the watchdog timer (including the operating current of the low-speed internal oscillator). When the watchdog timer is running, the current value of the microcontroller is I_{DD1} or I_{DD2} or I_{DD3} plus the value of I_{WDT}.

Note6: This is the current that only flows to the A/D converter. When the A/D converter is running in running

www.mcu.com.cn 56 / 81 Rev 1.0.8

mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the value of I_{ADC}.

- Note7: This is the current that only flows to the LVD circuit. In the case of LVD circuit operation, the current value of the microcontroller is the value of I_{DD1} or I_{DD2} or I_{DD3} plus I_{LVD} .
- Note8: This is the current that only flows to the D/A converter. When the A/D converter is running in running mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the value of I_{ADC}.
- Note9: This is the current that only flows to the comparator circuit. When the comparator circuit is running, the current value of the microcontroller is the value of I_{DD1} or I_{DD2} or I_{DD3} plus I_{CMP}.

Remark:

- 1. F_{IL}: Clock frequency of low-speed internal oscillator.
- 2. TYP. The temperature condition of the value is $T_A=25$ °C.
- 3. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 57 / 81 Rev 1.0.8

6.6 AC Characteristic

 $(T_{A}=-40\sim105^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol		Conditi	on	Min	Тур	Max	Unit
Instruction cycle	T		The main system clock (F _{MAIN}) runs 1.8V≤V _{DD} ≤5.5V		0.015625	-	1	us
(Minimum instruction execution time)	Tcy	Subsystem clock (F _{SUB}) operation		1.8V≤V _{DD} ≤5.5V	28.5	30.5	31.3	us
External system clock	T _{EX}	1.8V≤V _{DD} ≤	≤5.5V		1.0	-	20.0	MHz
frequency	T _{EXS}	1.8V≤V _{DD} ≤	1.8V≤V _{DD} ≤5.5V			-	35.0	KHz
High and low level	T _{EXH} T _{EXL}	1.8V≪V _{DD} ≤	≨5.5V	24	-	-	ns	
width of external system clock input	T _{EXHS}	1.8V≪V _{DD} ≤	≨5.5V	13.7	-	-	us	
TI00 ~ TI03, TI10 ~ TI17 output frequency	T _{TIH} T _{TIL}	1.8V≪V _{DD} ≤	≨5.5V		1/F _{MCK} +10	-	-	ns
Input period of timer	T _C	TAIO	2.4V≪EV _{DE}	o≤5.5V	100	-	-	ns
timerA	IC	TAIO	1.8V≤EV _{DE}	><2.4V	300	-	-	ns
The high and low	T _{TAIH}		2.4V≪EV _{DE}	o≤5.5V	40	-	-	ns
level width of timerA input	T _{TAIL}	TAIO	1.8V≪EV _{DD}	o<2.4V	120	-	-	ns

Remark:

- 1. F_{MCK}: timer4, timer8 operating clock frequency of timer4 unit
- 2. The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 58 / 81 Rev 1.0.8

 $(T_{A}=-40\sim105^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol	Co	ndition	Min	Тур	Max	Unit
Timer M input high and	T_{TMIH}	TMIOA0, TMIOA1	, TMIOB0, TMIOB1,	3/F _{CLK}	-	_	ns
low level width	T _{TMIL}	TMIOC0, TMIOC1	, TMIOD0, TMIOD1	O/I CLK			110
Timer M forced cut-off			2MHz<	1	_	_	us
signal input low-level	T _{TMSIL}	P136/INTP0	F _{CLK} ≤48MHz				
width			F _{CLK} ≤2MHz	1/F _{CLK} +1	-	-	us
Timer B input high and	T_TBIH	TBIOA, TBIOB		2.5/Fclk			ns
low level width	T _{TBIL}	TBIOA, TBIOB		Z.S/FCLK	_	_	115
TO00 ~ TO03,							
TO10 ~ TO17,		4.0V≤EV _{DD} ≤5.5	4.0V≤EV _{DD} ≤5.5V			16	MHz
TAIO0, TAO0,							
TMIOA0, TMIOA1,							
TMIOB0, TMIOB1,	Fто	2.4V≤EV _{DD} <4.0	-	-	8	MHz	
TMIOC0, TMIOC1,							
TMIOD0, TMIOD1,							
TBIOA, TBIOB Output		1.8V≤EV _{DD} <2.4	V	-	-	4	MHz
frequency							
		4.0V≤EV _{DD} ≤5.5	V	-	-	16	MHz
CLKBUZ0, CLKBUZ1	F _{PCL}	2.4V≤EV _{DD} <4.0	V	-	-	8	MHz
Output frequency							
		1.8V≤EV _{DD} <2.4	V	-	-	4	MHz
High and low level	T _{INTH}	INTP0 ~ INTP11	1.8V≤EV _{DD} ≤5.5V	1	_	_	us
width of interrupt input	T _{INTL}	11411 0 12 11411 11	1.0 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	'			us
High and low level							
width of key interrupt	T_KR	KR0 ~ KR7	1.8V≤EV _{DD} ≤5.5V	250	-	-	ns
input							
RESETB low-level width	T _{RSL}		-	10	-	-	us

Remark: The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured in mass production.

www.mcu.com.cn 59 / 81 Rev 1.0.8

6.7 Peripheral Features

6.7.1 Universal Interface Unit

(1) UART mode

 $(T_{A}=-40~85^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Itom		Condition			I Imit	
Item		Condition	Min	Max	Unit	
Transfer rate	1.8V ≤ EV _{DD} ≤ 5.5V	-	-	F _{MCK} /6	bps	
		The theoretical value of the maximum	_	10.6	Mbps	
		transfer rate FMCK=FCLK	-	10.0	IVIDPS	

$(T_A\!\!=\!\!85{\sim}105^{\circ}\!C,\,1.8V\!\!\leqslant\!EV_{DD}\!\!=\!\!V_{DD}\!\!\leqslant\!\!5.5V,\,V_{SS}\!\!=\!\!EV_{SS}\!\!=\!\!0V)$

Item		Condition	Specifica	Unit		
		Condition	Min	Max	Offic	
		-	-	F _{MCK} /12	bps	
Transfer rate	$1.8 \text{V} \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$	Theoretical value of the maximum transfer	_	5.3	Mbps	
		rate F _{MCK} =F _{CLK}	_	5.5	IVIDPS	

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 60 / 81 Rev 1.0.8

(2) Three-wire SPI mode (master mode, internal clock output) $(T_{A=}-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

lt a ma	Cumph of	_		-40 ~ 8	35°C	85 ~ 10	5°C	I limit
Item	Symbol		ondition	Min	Max	Min	Max	Unit
			4.0V≤EV _{DD} ≤5.5V	31.25	-	62.5	-	ns
SCLKp cycle time	Tuest	T _{KCY1} ≥2/F _{CLK}	2.7V≤EV _{DD} ≤5.5V	41.67	-	83.33	-	ns
	T KCY1	TRCY1 = Z/FCLK	2.4V≤EV _{DD} ≤5.5V	65	1	125	-	ns
			1.8V≤EV _{DD} ≤5.5V	125	1	250	-	ns
SCI Kn		4.0V≤EV _{DD} ≤5.	5V	T _{KCY1} /2-4	1	T _{KCY1} /2-7	-	ns
SCLKp	T _{KH1}	2.7V≤EV _{DD} ≤5.	5V	T _{KCY1} /2-5	1	T _{KCY1} /2-10	-	ns
high/low level width	T _{KL1}	2.4V≤EV _{DD} ≤5.5V		T _{KCY1} /2-10	1	T _{KCY1} /2-20	-	ns
level width		1.8V≤EV _{DD} ≤5.5V		T _{KCY1} /2-19	1	T _{KCY1} /2-38	-	ns
SDIp		4.0V≤EV _{DD} ≤5.	5V	12	1	23	-	ns
preparatio	T	2.7V≤EV _{DD} ≤5.	5V	17	-	33	-	ns
n time (to	T _{SIK1}	2.4V≤EV _{DD} ≤5.	5V	20	-	38	-	ns
SCLKp↑)		1.8V≤EV _{DD} ≤5.	5V	28	-	55	-	ns
SDIp hold								
time (to	T _{KSI1}	1.8V≤EV _{DD} ≤5.	5V	5	-	10	-	ns
SCLKp↑)								
$SCLKp{\downarrow}{\rightarrow}$								
SDOp	T _{KSO1}	1.8V≤EV _{DD} ≤5.	5V	_	5	_	10	ns
output	I KSUT	C=20pF Note1			3		10	113
delay time								

Note1: C is the load capacitance of the SCLKp and SDOp output lines.

Note: Through the port input mode register and the port output mode register, the SDIp pin is selected as the normal input buffer and the SDOp the pin and SCLKp pin are selected as the usual output mode.

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 61 / 81 Rev 1.0.8

(3) Three-wire SPI mode (slave mode, external clock input) $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

lto me	Curahal	Condition		-40 ~ 8	35°C	85 ~ 105	5°C	Unit
Item	Symbol	Conditi	on	Min	Max	Min	Max	Unit
		4.0V≤EV _{DD} ≤5.5V	20MHz <f<sub>MCK</f<sub>	8/F _{MCK}	-	16/F _{MCK}	-	ns
		4.0V ≪ E V DD ≪ 5.5V	F _{MCK} ≤20MHz	6/Ғмск	-	12/F _{MCK}	-	ns
	2.7V≤EV _{DD} ≤5.5V	16MHz <f<sub>MCK</f<sub>	8/F _{MCK}	-	16/F _{MCK}	1	ns	
SCLKp	SCLKp T _{KCY2}	2.7 V < E V DD < 5.5 V	F _{MCK} ≤16MHz	6/F _{MCK}	-	12/F _{MCK}	-	ns
cycle time	T KCY2	2 4\/ < E\/ < 5 5\/		6/F _{MCK} and		12/F _{MCK} and		no
		$2.4V \leq EV_{DD} \leq 5.5V$		≥ 500	-	≥ 1000	,	ns
		1.8V ≤ EV _{DD} ≤ 5.5V		6/F _{MCK} and		12/F _{MCK} and	_	ne
		1.6V < EVDD < 5.5V		≥ 750	-	≥ 1500	_	ns
SCLKp	Т	$4.0V \leqslant EV_{DD} \leqslant 5.5V$		T _{KCY1} /2-7	-	T _{KCY1} /2-14	1	ns
high/low	T _{KH2}	$2.7V \leq EV_{DD} \leq 5.5V$		T _{KCY1} /2-8	-	T _{KCY1} /2-16	-	ns
level width	TKL2	$1.8V \leq EV_{DD} \leq 5.5V$		T _{KCY1} /2-18	-	T _{KCY1} /2-36	ı	ns
SDIp		$2.7V \leqslant EV_{DD} \leqslant 5.5V$		1/F _{MCK} +20	-	1/F _{MCK} +40	-	ns
preparatio n time (to SCLKp↑)	T _{SIK2}	1.8V ≤ EV _{DD} ≤ 5.5V		1/Fмск+30	-	1/Fмск+60	-	ns
SDIp hold time (to SCLKp↑)	T _{KSl2}	1.8V ≤ EV _{DD} ≤ 5.5V		1/F _{MCK} +31	-	1/F _{MCK} +62	1	ns
$SCLKp\downarrow \rightarrow$		$2.7V \le EV_{DD} \le 5.5V$ C=30pF Note1		-	2/F _{MCK} +	-	2/F _{MCK} +66	ns
SDOp	T _{KSO2}	$2.4V \leq EV_{DD} \leq 5.5V$		-	2/F _{MCK} +	-	2/F _{MCK}	ns
output		C=30pF Note1			75		+113	
delay time		$1.8V \le EV_{DD} \le 5.5V$ C=30pF Note1		-	2/F _{MCK} +	-	2/F _{мск} +150	ns

Note1: C is the load capacitance of the SCLKp and SDOp output lines.

Note: Through the port input mode register and the port output mode register, The SDIp pin and SCLKp pin are selected as the normal input buffer and the SDOp pin is selected as the normal output mode.

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 62 / 81 Rev 1.0.8

(4) Four-wire SPI mode (slave mode, external clock input) (T_A= -40~105°C, 1.8V≤EV_{DD}=V_{DD}≤5.5V, V_{SS}=EV_{SS}=0V)

Itom Symbo	Symbol	Condition		-40 ~ 85	s°C	85 ~ 105	5°C	Unit
Item	tterii Symbol		Condition	Min	Max	Min	Max	Unit
	SSI00 Set up time TSSIK	DADmn_0	$2.7V \leq EV_{DD} \leq 5.5V$		-	240	-	ns
SSI00		DAFIIII=0	$1.8V \le EV_{DD} \le 5.5V$		ı	400	-	ns
set up time		DAPmn=1	DAPmn-1 $2.7V \leq EV_{DD} \leq 5.5V$		1/F _{MCK} +120	ı	1/F _{MCK} +240	-
			$1.8V \leq EV_{DD} \leq 5.5V$	1/F _{MCK} +200	1	1/F _{MCK} +400	-	ns
		DAPmn=0	$2.7 \text{V} \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$	1/F _{MCK} +120	-	1/F _{MCK} +240	-	ns
SSI00			$1.8V \leqslant EV_{DD} \leqslant 5.5V$	1/F _{MCK} +200	1	1/F _{MCK} +400	-	ns
hold time	TKSSI	DAPmn=1	$2.7 \text{V} \leqslant \text{EV}_{\text{DD}} \leqslant 5.5 \text{V}$	120	-	240	-	ns
			$1.8V \leqslant EV_{DD} \leqslant 5.5V$	200	1	400	-	ns

Note: Through the port inputmode register and the port outputmode register, The SDIp pin and SCLKp pin are selected as the normal input buffer and the SDOp pin is selected as the normal output mode.

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 63 / 81 Rev 1.0.8

(5) Simple IIC mode

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

lt o me	Cumbal	Condition	-40 ~ 85°	°C	85 ~ 105°C	;	Linia
Item	Symbol	Condition	Min	Max	Min	Max	Unit
		$2.7V \le EV_{DD} \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	-	1000 ^{Note1}	-	400 ^{Note1}	KHz
SCLr Clock frequency	F _{SCL}	$1.8V \leqslant EV_{DD} \leqslant 5.5V$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	-	400 ^{Note1}	-	100 ^{Note1}	KHz
		$1.8V \leqslant EV_{DD} \leqslant 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-	300 ^{Note1}	-	75 ^{Note1}	KHz
	Hold time when SCLr T _{LOW}	$2.7V \leqslant EV_{DD} \leqslant 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475	-	1200	-	ns
when SCLr		$1.8V \leqslant EV_{DD} \leqslant 5.5V$ $C_b = 100 \text{ pF, } R_b = 3 \text{ k}\Omega$	1150	-	4600	-	ns
is low		$1.8V \leqslant EV_{DD} \leqslant 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550	-	6500	-	ns
		$2.7V \le EV_{DD} \le 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475	-	1200	-	ns
Hold time when SCLr	THIGH	$1.8V \le EV_{DD} \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150	-	4600	-	ns
is high		$1.8V \le EV_{DD} \le 2.7V$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550	-	6500	-	ns
Data		$2.7V \leqslant EV_{DD} \leqslant 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/F _{MCK} +85 ^{Note2}	-	1/F _{MCK} +220 ^{Note2}	-	ns
establishme nt time	T _{SU: DAT}	$1.8V \le EV_{DD} \le 5.5V$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1/F _{MCK} +145 ^{Note2}	-	1/F _{MCK} +580 ^{Note2}	-	ns
(received)		$1.8V \leqslant EV_{DD} \leqslant 2.7V$ $C_b = 100 \text{ pF, } R_b = 5 \text{ k}\Omega$	1/F _{MCK} +230 ^{Note2}	-	1/F _{MCK} +1200 ^{Note2}	-	ns
Deta		$2.7V \leqslant EV_{DD} \leqslant 5.5V$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	-	305	-	770	ns
Data retention	THD: DAT	$1.8V \leqslant EV_{DD} \leqslant 5.5V$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	-	355	-	1420	ns
time (send)		$1.8V \leqslant EV_{DD} \leqslant 2.7V$ $C_b = 100 \text{ pF, } R_b = 5 \text{ k}\Omega$	-	405	-	2070	ns

Note1: Must be set to at least $F_{MCK}/4$.

Note2: The set value of F_{MCK} cannot exceed the holding time of SCLr= "L" and SCLr= "H".

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 64 / 81 Rev 1.0.8

6.7.2 Serial Interface IICA

(1) I²C standard mode

 $(T_{A}=-40\sim105^{\circ}C, 1.8V \le EV_{DD}=V_{DD} \le 5.5V, V_{SS}=EV_{SS}=0V)$

Itom	Cumbal	Condition	Specifica	tion Value	Unit
Item	Symbol	Condition	Min	Max	Unit
SCLAr clock frequency	F _{SCL}	Standard mode: F _{CLK} ≥1MHz	-	100	KHz
Start condition set up time	T _{SU: STA}	-	4.7	-	us
Start condition hold time Note1	T _{HD: STA}	-	4.0	-	us
Hold time when SCLAr is low	T _{LOW}	-	4.7	-	us
Hold time when SCLAr is high	T _{HIGH}	-	4.0	-	us
Data establishment time (received)	Tsu: dat	-	250	-	ns
Data retention time (send) ^{Note2}	T _{HD: DAT}	-	0	3.45	us
Stop condition set up time	T _{SU: STO}	-	4.0	-	us
Bus idle time	T _{BUF}	-	4.7	-	us

Note1: Generate the first clock pulse after generating the start condition or restarting the condition.

Note2: During normal transmission, the maximum value (MAX.) of T_{HD:DAT} needs to be guaranteed, and it is necessary to wait for an acknowledgement (ACK).

Note: The MAX. value of C_b (communication line capacitance) of each mode and the value of R_b (communication line pull-up resistance value) at this time are as follows:

Standard mode: C_b=400pF, R_b=2.7KΩ

Remark: It is guaranteed by the design and not tested in mass production.

(2) I2C fast mode

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

,	1	· · · · · · · · · · · · · · · · · · ·	1		1
Item	Symbol	Condition	Specifica	Unit	
item	Symbol	Condition	Min	Max	Offic
SCLAr clock frequency	F _{SCL}	Fast mode: F _{CLK} ≥3.5MHz	-	400	KHz
Start condition set up time	T _{SU:} STA	-	0.6	-	us
Start condition hold time Note1	T _{HD:} STA	-	0.6	-	us
Hold when SCLAr is low time	T _{LOW}	-	1.3	-	us
Hold when SCLAr is high time	T _{HIGH}	-	0.6	-	us
Data set up time (received)	T _{SU: DAT}	-	100	-	ns
Data hold time (send) ^{Note2}	T _{HD: DAT}	-	0	0.9	us
Stop condition set up time	Tsu: sto	-	0.6	-	us
Bus idle time	T _{BUF}	-	1.3	-	us

Note1: Generate the first clock pulse after generating the start condition or restarting the condition.

Note2: During normal transmission, the maximum value (MAX.) of T_{HD:DAT} needs to be guaranteed, and it is necessary to wait for an acknowledgement (ACK).

Note: The MAX. value of C_b (communication line capacitance) of each mode and the value of R_b (communication line pull-up resistance value) at this time are as follows:

Fast mode: $C_b=320pF$, $R_b=1.1k\Omega$

Remark: It is guaranteed by the design and not tested in mass production.

(3) I2C enhanced fast mode

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Itom	Symbol	Condition	Specificat	Unit	
Item	Symbol	Condition	Min	Max	Unit
SCLAr clock frequency	F _{SCL}	Enhanced fast mode: F _{CLK} ≥10MHz	-	1000	KHz
Start condition set up time	T _{SU: STA}	-	0.26	-	us
Start condition hold time Note1	T _{HD:} STA	-	0.26	-	us
Hold time when SCLAr is low	T _{LOW}	-	0.5	-	us
When SCLAr is high hold time	T _{HIGH}	-	0.26	-	us
Data set up time (received)	T _{SU: DAT}	-	50	-	ns
Data hold time (send) ^{Note2}	THD: DAT	-	0	0.45	us
Stop condition set up time	T _{SU: STO}	-	0.26	-	us
Bus idle time	T _{BUF}	-	0.5	-	us

Note1: Generate the first clock pulse after generating the start condition or restarting the condition.

Note2: During normal transmission, the maximum value (MAX.) of ThD:DAT needs to be guaranteed, and it is necessary to wait for an acknowledgement (ACK).

Note: The MAX. value of C_b (communication line capacitance) of each mode and the value of R_b (communication line pull-up resistance value) at this time are as follows:

Enhanced fast mode: C_b=120pF, R_b=1.1KΩ

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 66 / 81 Rev 1.0.8

6.8 Analog Characteristic

6.8.1 A/D Converter Characteristic

The distinction of A/D converter characteristic

Input channel	Reference voltage	Reference voltage (+) =AV _{REFP} Reference voltage (-) =AV _{REFM}	Reference voltage (+) =V _{DD} Reference voltage (-) =V _{SS}
ANIO~	ANI20		
Internal reference voltage, output voltage of		See 6.8.1(1)。	See (2)。
temperature sensor			

(1) Select the case of reference voltage (+)=AV_{REFP}/ANI0, reference voltage (-)=AV_{REFM}/ANI1 (T_A= -40~105°C, 1.8V≤AV_{REFP}≤EV_{DD}=V_{DD}≤5.5V, V_{SS}=0V, reference voltage (+)=AV_{REFP}, reference voltage (-)=AV_{REFM}=0V)

Item	Symbol	Co	ondition	Min	Тур	Max	Unit
Resolution	RES		-		12		bit
External input resistance	R _{AIN}	RAIN < (Ts / (FADC)	-	7.5 ^{Note4}	-	ΚΩ	
Sampling switch resistance	R _{ADC}		-	-	-	1.5	ΚΩ
Sample holding capacitance	C _{ADC}		-	-	2	-	pF
Composite error Note1	AINL	12-bit resolution	$1.8V \le AV_{REFP} \le 5.5V$	-	3	-	LSB
		12-bit resolution Conversion target: ANI2~ ANI15	1.8V≤V _{DD} ≤5.5V	45	-	1	1/F _{ADC}
Conversion time Note3	Tconv	12-bit resolution Conversion object: internal reference voltage, temperature sensor output voltage, PGA output voltage	1.8V≤V _{DD} ≤5.5V	72	-	1	1/F _{ADC}
Zero error Note1	EZS	12-bit resolution	$1.8V \leqslant AV_{REFP} \leqslant 5.5V$	-	0	-	LSB
Full scale error Note1	EFS	12-bit resolution	$1.8V \le AV_{REFP} \le 5.5V$	-	0	-	LSB
Integral linearity error	ILE	12-bit resolution	1.8V ≤ AV _{REFP} ≤5.5V	-1	-	1	LSB
Differential linearity error Note1	DLE	12-bit resolution	1.8V ≤ AV _{REFP} ≤5.5V	-1.5	-	1.5	LSB
		ANI2~ ANI20		0	-	AV _{REFP}	V
Analog input voltage	V _{AIN}	Internal reference volt	age (1.8V≤V _{DD} ≤5.5V)	V _{BGR} Note2			V
<u> </u>		The output voltage of (1.8V≤V _{DD} ≤5.5V)	the temperature sensor	,	V _{TMPS25} No	ote2	V

Note1: Does not include quantization error ($\pm 1/2$ LSB).

Note2: Please refer to "6.8.2 Characteristic of Temperature Sensor/internal Reference Voltage"。

Note3: F_{ADC} is the AD action clock cycle, the maximum action frequency is 64MHz.

Note4: It is guaranteed by the design and not tested in mass production. The typical value is the calculated value under the condition of default sampling period T_S=13.5 and conversion speed F_{ADC}=64MHz.

www.mcu.com.cn 67 / 81 Rev 1.0.8

(2) Select the case of reference voltage (+)=V_{DD} and reference voltage (-)=V_{SS} (T_A= -40~ 105°C, 1.8V≤EV_{DD}=V_{DD}≤5.5V, V_{SS}=EV_{SS}=0V, reference voltage (+) =V_{DD}, reference voltage (-)=V_{SS})

()- \$ 33)							
Item	Symbol	Condition	on	Min	Тур	Max	Unit
Resolution	RES	-		-	12	-	bit
External input resistance	RAIN	Rain < (Ts / (Fado x Cado	x In(2 ¹²⁺²)) - R _{ADC})	-	7.5 ^{Note4}	1	ΚΩ
Sampling switch resistance	R _{ADC}	-		-	-	1.5	ΚΩ
Sample holding capacitance	CADC	-		-	2	1	pF
Composite error Note1	AINL	12-bit resolution	$1.8V \leq AV_{REFP} \leq 5.5V$	-	6	-	LSB
Conversion time Note3		12-bit resolution Conversion target: ANI0~ ANI15	1.8V≤V _{DD} ≤5.5V	45	-	1	1/F _{ADC}
	T _{CONV}	12-bit resolution Conversion object: internal reference voltage, temperature sensor output voltage, PGA output voltage	1.8V≤V _{DD} ≤5.5V	72	-	ı	1/F _{ADC}
Zero error Note1	EZS	12-bit resolution	$1.8V \leqslant AV_{REFP} \leqslant 5.5V$	-	0	-	LSB
Full scale error Note1	EFS	12-bit resolution	$1.8V \le AV_{REFP} \le 5.5V$	-	0	-	LSB
Integral linearity error	ILE	12-bit resolution	1.8V ≤ AV _{REFP} ≤5.5V	-2	-	2	LSB
Differential linearity error	DLE	12-bit resolution	$1.8V \le AV_{REFP} \le 5.5V$	-3	-	3	LSB
		ANI0~ ANI7		0	-	V_{DD}	V
		ANI8~ ANI20		0	-	EV_DD	V
Analog input voltage	V_{AIN}	Internal reference voltage (1.8\	Internal reference voltage (1.8V≤V _{DD} ≤5.5V)			2	V
		The output voltage of the temperature sensor (1.8V ≤ V _{DD} ≤ 5.5V)			TMPS25 Not	e2	V

Note1: Does not include quantization error (±1/2 LSB).

Note2: Please refer to "6.8.2 Characteristic of Temperature Sensor/internal Reference Voltage".

Note3: F_{ADC} is the AD action clock cycle, the maximum action frequency is 64MHz.

Note4: It is guaranteed by the design and not tested in mass production. The typical value is the calculated value under the condition of default sampling period T_S=13.5 and conversion speed F_{ADC}=64MHz.

www.mcu.com.cn 68 / 81 Rev 1.0.8

6.8.2 Characteristic of Temperature Sensor/internal Reference Voltage

 $(T_A = -40 \sim 105^{\circ}C, 1.8V \leq V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V)$

Item	Symbol	Condition	Min	Тур	Max	Unit
The output voltage of the temperature sensor	V _{TMPS25}	T _A =25°C	-	1.09	-	V
	V _{BGR}	T _A = -40~10°C	1.25 ^{Note1}	1.45	1.65 ^{Note1}	V
Internal reference voltage		T _A =10~70°C	1.38	1.45	1.5	V
		T _A =70~105°C	1.32	1.45	1.55	V
Temperature Coefficient	F _{VTMPS}	-	-	-3.5	-	mV/°C
Stable operation waiting time	T _{AMP}	-	5	-	-	us

Remark: The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured for mass production.

6.8.3 D/A Converter

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Item	Symbol	Condition		Min	Тур	Max	Unit
Resolution	RES	-	-	-	-	8	bit
Composite error	AINL	Rload=4MΩ	1.8V≤V _{DD} ≤5.5V	-2.5	-	2.5	LSB
stable schedule	+	Cload=20pF	2.7V≤V _{DD} ≤5.5V	-	-	3	us
	T _{SET}		1.8V≤V _{DD} <2.7V	-	-	6	us
Output impedance	RO	Rload=4MΩ	2.0V≤V _{DD} ≤5.5V	4.7	-	8	ΚΩ

Remark: The low temperature specification value is guaranteed by the design, and the low temperature condition is not measured for mass production.

www.mcu.com.cn 69 / 81 Rev 1.0.8

6.8.4 Comparator

 $(T_A = -40 \sim 105^{\circ}C, 1.8V \leq EV_{DD} = V_{DD} \leq 5.5V, V_{SS} = EV_{SS} = 0V)$

			·				
Item	Symbol	Co	ondition	Min	Тур	Max	Unit
input deviation voltage	VIOCMP	-		-	±10	±40	mV
input voltage range	I _{vcmp}		-		-	V_{DD}	V
Internal reference voltage deviation	ΔV_IREF	CmRVM register: 7FH ~ 80H (m = 0, 1)		-	-	±2	LSB
		others		-	-	±1	LSB
Response time	T _{CR} T _{CF}	input amplitude ±100mV		-	70	150	ns
Ctable eneration time Note1	Т	CMDs 0 · 1	V _{DD} = 3.3 ~ 5.5V	-	-	1	
Stable operation time ^{Note1}	Тсмр	CMPn=0->1	V _{DD} = 1.8 ~ 3.3V	-	-	3	us
Reference voltage stabilization time	T_{VR}	CVRE=0->1 Note2		1	-	20	us
operating current	ICMPDD	Refer to 6.5.2	Power Supply Curr	ent Char	acteristic	S	

Note1: The time required from the enable of the comparator action (CMPnEN=0 —>1) to meeting the various DC/AC style requirements of CMP.

Note2: After the internal reference voltage generator is enabled (by setting the CVREm bit to 1; m = 0 to 1), the comparator output can be enabled after the reference voltage stabilization time (CnOE bit = 1; n = 0 to 1)

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 70 / 81 Rev 1.0.8

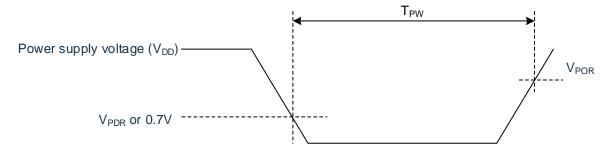
6.8.5 Programmable Gain Amplifier PGA

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Symbol	Parameter	C	ondition	Min	Тур	Max	Unit
Input deviation voltage	Viopga		-	-	-	±10	mV
Input voltage range	VIPGA		-	0	-	0.9xV _{DD} /Gain	V
Output	V _{IOHPGA}		-	0.93xV _{DD}	-	-	V
voltage range	V _{IOLPGA}		-	-	-	$0.07xV_{DD}$	V
		x4	-	-	-	±1	%
		x8	-	-	-	±1	%
		x10	-	-	-	±1	%
Gain deviation		x12	-	-	-	±2	%
	x14	-	-	-	±2	%	
		x16	-	-	-	±2	%
		x32	-	-	-	±3	%
SR _{RPG}		rise Vin= 0.1V _{DD} /gain	$4.0 \text{ V} \leqslant \text{V}_{DD} \leqslant 5.5 \text{ V}$ (Other than x32)	3.5	-	-	
	SR _{RPGA}	to 0.9V _{DD} /gain. 10 to 90% of output	$4.0 V \leqslant V_{DD} \leqslant 5.5 V$ (x32)	3.0	-	-	
Conversion		voltage amplitude	$1.8 \text{ V} \leqslant \text{V}_{DD} \leqslant 4.0 \text{V}$	0.5	-	-	
rate		drop Vin= 0.1V _{DD} /gain	$4.0 \text{ V} \leqslant \text{V}_{DD} \leqslant 5.5 \text{ V}$ (Other than x32)	3.5	-	-	V/us
	SR _{FPGA}	to 0.9V _{DD} /gain. 90 to 10% of output	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$ (x32)	3.0	-	-	
		voltage amplitude	$1.8 \text{ V} \leqslant \text{V}_{DD} \leqslant 4.0 \text{V}$	0.5	-	-	
		x4	-	-	-	5	us
		x8	-	-	-	5	us
Stable		x10	-	-	-	5	us
operation time	T_{PGA}	x12	-	-	-	10	us
Note 1		x14	-	-	-	10	us
		x16	-	-	-	10	us
		x32	-	-	-	10	us
Working current	I _{PGADD}	Refer to 6.5.2 Power	er Supply Current Characte	ristics			

Note1: The time required from PGA action enable (PGAEN=1) to meeting various DC and AC style requirements of PGA.

Remark: It is guaranteed by the design and not tested in mass production.



6.8.6 POR Circuit Characteristic

(T_A= -40~105°C, V_{SS}=0V)

Item	Symbol	Condition	Min	Тур	Max	Unit
Detection	V _{POR}	When the power supply voltage rises	-	1.60	1.75	V
voltage	V _{PDR}	When the power supply voltage drops	1.37	1.50	1.55	V
Minimum pulse width ^{Note1}	T _{PW}	-	300	-	-	us

Note1: This is the time required for POR to reset when V_{DD} is lower than V_{PDR}. In addition, in the deep sleep mode, when the main system clock (F_{MAIN}) is stopped by setting bit0 (HIOSTOP) and bit7 (MSTOP) of the clock operation status control register (CSC), the oscillation of the main system clock (F_{MAIN}) is stopped from V_{DD} lower than 0.7V to rise above V_{POR}. Time required for POR reset.

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 72 / 81 Rev 1.0.8

6.8.7 LVD Circuit Characteristic

(1) Reset mode and interrupt mode

 $(T_{A}=-40\sim105^{\circ}C, V_{PDR}\leq V_{DD}\leq 5.5V, V_{SS}=0V)$

Item	Symbol	Condition	Min	Тур	Max	Unit
	V _{LVD0}	power supply voltage rises	-	4.06	1	V
	V LVD0	power supply voltage drops	-	3.98	-	V
	\/	power supply voltage rises	-	3.75	-	V
	V _{LVD1}	power supply voltage drops	-	3.67	-	V
		power supply voltage rises	-	3.13	-	V
	V _{LVD2}	power supply voltage drops	-	3.06	-	V
		power supply voltage rises	-	3.02	-	V
	V _{LVD3}	power supply voltage drops	-	2.96	-	V
		power supply voltage rises	-	2.92	-	V
	V _{LVD4}	power supply voltage drops	-	2.86	-	V
		power supply voltage rises	-	2.81	-	V
Datastianuslitana	V _{LVD5}	power supply voltage drops	-	2.75	-	V
Detection voltage	V _L VD6	power supply voltage rises	-	2.71	-	V
		power supply voltage drops	-	2.65	-	V
	.,	power supply voltage rises	-	2.61	-	V
	V_{LVD7}	power supply voltage drops	-	2.55	-	V
		power supply voltage rises	-	2.50	-	V
	V_{LVD8}	power supply voltage drops	-	2.45	-	V
		power supply voltage rises	-	2.09	-	V
	V _{LVD9}	power supply voltage drops	-	2.04	-	V
		power supply voltage rises	-	1.98	-	V
	V _L VD10	power supply voltage drops	-	1.94	-	V
		power supply voltage rises	-	1.88	-	V
	V _{LVD11}	power supply voltage drops	-	1.84	-	V
Minimum pulse width	T _{LW}	-	300	-	-	us
Detection delay	-	-	-	-	300	us

Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 73 / 81 Rev 1.0.8

(2) Interrupt mode & reset mode $(T_{A}=-40\sim105^{\circ}C, V_{PDR} \leq V_{DD} \leq 5.5V, V_{SS}=0V)$

Item	Symbol		Cor	ndition	Min	Тур	Max	Unit
	V _{LVDA0}		decr	ease reset voltage	-	1.63	-	V
	.,		LVIS1=1	rising reset release voltage	-	1.77	-	V
	V _{LVDA1}	V _{POC2} =0	LVIS0=0	drop interrupt voltage	-	1.73	-	V
	.,	V _{POC1} =0	LVIS1=0	rising reset release voltage	-	1.88	-	V
	V _{LVDA2}	V _{POC0} =0	LVIS0=1	drop interrupt voltage	-	1.84	-	V
	\/		LVIS1=0	rising reset release voltage	-	2.92	-	V
	V_{LVDA3}		LVIS0=0	drop interrupt voltage	-	2.86	-	V
	V _{LVDB0}		decr	ease reset voltage	-	1.84	-	V
	.,		LVIS1=1	rising reset release voltage	-	1.98	-	V
	V _{LVDB1}	V _{POC2} =0	LVIS0=0	drop interrupt voltage	-	1.94	-	V
	.,	V _{POC1} =0	LVIS1=0	rising reset release voltage	-	2.09	-	V
	V _{LVDB2}	V _{POC0} =1	LVIS0=1	drop interrupt voltage	-	2.04	-	V
	.,		LVIS1=0	rising reset release voltage	-	3.13	-	V
Interrupt &	V _{LVDB3}		LVIS0=0	drop interrupt voltage	-	3.06	-	V
reset mode	V _{LVDC0}		decr	rease reset voltage	-	2.45	-	V
	.,		LVIS1=1	rising reset release voltage	-	2.61	-	V
	V _{LVDC1}	V _{POC2} =0	LVIS0=0	drop interrupt voltage	-	2.55	-	V
	.,	V _{POC1} =1	LVIS1=0	rising reset release voltage	-	2.71	-	V
	V _{LVDC2}	V _{POC0} =0	LVIS0=1	drop interrupt voltage	-	2.65	-	V
	.,		LVIS1=0	rising reset release voltage	-	3.75	-	V
	V _{LVDC3}		LVIS0=0	drop interrupt voltage	-	3.67	-	V
	V _{LVDD0}		decr	rease reset voltage	-	2.75	-	V
	.,		LVIS1=1	rising reset release voltage	-	2.92	-	V
	V _{LVDD1}	V _{POC2} =0	LVIS0=0	drop interrupt voltage	-	2.86	-	V
	.,	V _{POC1} =1	LVIS1=0	rising reset release voltage	-	3.02	-	V
	V _{LVDD2}	V _{POC0} =1	LVIS0=1	drop interrupt voltage	-	2.96	-	V
	.,		LVIS1=0	rising reset release voltage	-	4.06	-	V
	V _L VDD3		LVIS0=0	drop interrupt voltage	-	3.98	-	V

6.8.8 The Rising Slope of The Power Supply Voltage

Characteristic

(T_A= -40~105°C, V_{SS}=0V)

(17)						
Item	Symbol	Condition	Min	Тур	Max	Unit
Reset time	T _{RESET}	-	-	1	-	ms
The rising slope of the power supply voltage	SV _{DD}	-	-	-	54	V/ms

Remark: It is guaranteed by the design and not tested in mass production.

6.9 Memory Characteristic

6.9.1 Flash Memory Characteristic

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Symbol	Parameter	Conditions	Min	Max	Unit
T _{PROG}	Word Program(32bit)	T _A = -40~105°C	24	30	us
т	Sector erase	T _A = -40~105°C	4	5	ms
Terase	Chip erase	T _A = -40~105°C	20	40	ms
N _{END}	Endurance	T _A = -40~105°C	20	-	kcycles
T _{RET}	Data retention	20 kcycles ^{Note1} at T _A = 105°C	20	-	Years

Note1: Cycling performed over the whole temperature range.

Remark: It is guaranteed by the design and not tested in mass production.

6.9.2 RAM Memory Characteristic

 $(T_{A}=-40\sim105^{\circ}C, 1.8V\leq EV_{DD}=V_{DD}\leq5.5V, V_{SS}=EV_{SS}=0V)$

Symbol Parameter		Conditions	Min	Max	Unit
$V_{RAMHOLD}$	RAM Hold Voltage	T _A = -40~105°C	0.8	-	V

Remark: It is guaranteed by the design and not tested in mass production.

6.10 Electrical Sensitivity Characteristic

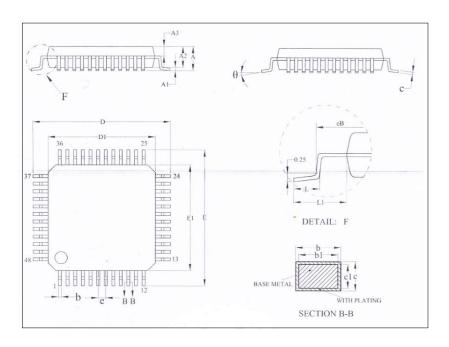
6.10.1 Electrostatic Discharge (ESD) Characteristic

Symbol Parameter		Conditions	Class	
\/	Electrostatic discharge voltage	T _A = 25°C	2.4	
VESD(HBM)	(human body model)	JESD22-A114	3A	

Remark: It is guaranteed by the design and not tested in mass production.

6.10.2 Static Latch-up(LU) Characteristic

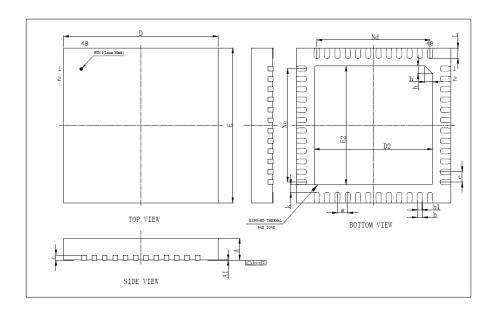
Symbol	Parameter	Conditions	Class
111	Ctatic latch up along	T _A = 25°C	I
LU	Static latch-up class	JESD78E	LevelA


Remark: It is guaranteed by the design and not tested in mass production.

www.mcu.com.cn 76 / 81 Rev 1.0.8

7 Package Size Chart

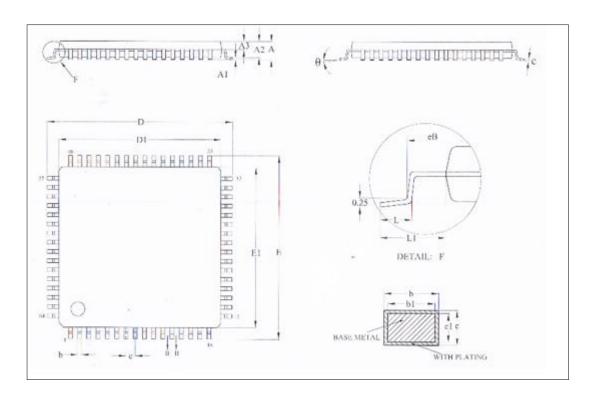
7.1 LQFP48 (7x7mm, 0.5mm)



Courselle al		Millimeter	
Symbol	Min	Nom	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
А3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
е		0.50BSC	
L	0.45	-	0.75
L1		1.00REF	
θ	0°	-	7°

www.mcu.com.cn 77 / 81 Rev 1.0.8

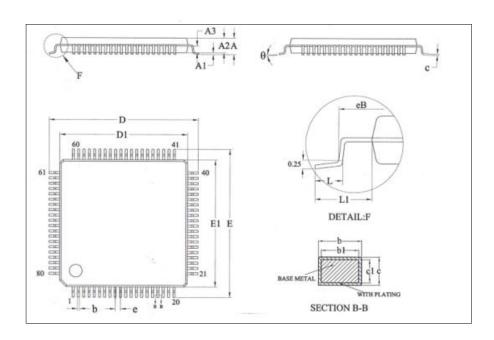
7.2 QFN48 (6x6mm, 0.4mm)



Symbol		Millimeter	
Symbol	Min	Nom	Max
Α	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.15	0.20	0.25
b1		0.18REF	
С	0.203REF		
D	5.90	6.00	6.10
D2	4.55	4.60	4.65
е	0.40BSC		
Nd	4.40BSC		
Ne	4.40BSC		
E	5.90	6.00	6.10
E2	4.55	4.60	4.65
L	0.35	0.40	0.45
h	0.25	0.30	0.35
R	0.075REF		
k	0.25	0.30	0.35

www.mcu.com.cn 78 / 81 Rev 1.0.8

7.3 LQFP64 (7x7mm, 0.4mm)



Cumahad		Millimeter	
Symbol	Min	Nom	Max
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.16	-	0.24
b1	0.15	0.18	0.21
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
е		0.40BSC	
L	0.45	-	0.75
L1	1.00REF		
θ	0°	-	7°

www.mcu.com.cn 79 / 81 Rev 1.0.8

7.4 LQFP80 (12×12mm, 0.5mm)

Coursels al		Millimeter	
Symbol	Min	Nom	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	13.80	14.00	14.20
D1	11.90	12.00	12.10
Е	13.80	14.00	14.20
E1	11.90	12.00	12.10
eB	13.05		13.25
е		0.50BSC	
L	0.45	0.60	0.75
L1	1.00REF		,
θ	0°	-	7°

www.mcu.com.cn 80 / 81 Rev 1.0.8

8 Revision History

Devision	Modify content		Modify content
Revision	Date	Page/section	content
V1.0 2021.01.11 —		_	Initial verison
V1.1	2021.07.20	6.10	Update the electrical sensitivity characteristic data
V1.2	2021.08.24	6.4.3	Fix some mistakes
V1.3	2022.01.24	P2	Fix some mistakes
		P3	Modify Description
V1.04	2023.03.01	6	Modify parameters and and contents, and supplement the remarks of parameters under low temperature conditions.
		full text	Optimize format
V1.0.5	2023.03.16	4.1, 1.3.1 1.3.4, 4.1.3	Correct the inconsistency between port function and pin connection diagram P137 Pin function SI00 corrected to SDI00
V1.0.6	2023.09.12	1.1, 6.2,6.3,6.5.1	Modify the introduction Adjusted the format of the pinout diagram 80pin encapsulates the P40 supplement (TXD0) function in the diagram Update P150~P153 pin characteristics
V1.0.7 2023.11.30		5.14 6.9.1	Modify Description Updated Flash erase times
		4.1.3 6.1, 6.4.1	Added P64~P67 support for internal pull-up function Modify the value of the application peripheral circuit and the XT1 clock
V1.0.8	2024.01.29	1.2, 1.3.2, 7.2 5.13.2	oscillation starting capacitance Added BAT32G139GK48NB model and related information Modify the number of multiple PWM signals in the timer4 Corrected the cover page

www.mcu.com.cn 81 / 81 Rev 1.0.8